多选题一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A(P)可行D.无解,则(P)无有限最优解B(P)、D.均有可行解,则都有最优解C(P)有可行解,则D.有最优解D(P)D.互为对偶EE.(P)有最优解,则有可行解
多选题
一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()
A
(P)可行D.无解,则(P)无有限最优解
B
(P)、D.均有可行解,则都有最优解
C
(P)有可行解,则D.有最优解
D
(P)D.互为对偶
E
E.(P)有最优解,则有可行解
参考解析
解析:
暂无解析
相关考题:
下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解
一个线性规划问题(P)与它的对偶问题(D)有关系()。A、(P)有可行解则(D)有最优解B、(P)、(D)均有可行解则都有最优解C、(P)可行(D)无解,则(P)无有限最优解D、(P)(D)互为对偶
关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解
一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A、(P)可行D.无解,则(P)无有限最优解B、(P)、D.均有可行解,则都有最优解C、(P)有可行解,则D.有最优解D、(P)D.互为对偶E、E.(P)有最优解,则有可行解
判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解
设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。A、若(P)无可行解,则(D)也无可行解B、(P)、(D)均有可行解则都有最优解C、(P)的约束均为等式,则(D)的所有变量均无非负限制D、(D)也是(P)的对偶问题
单选题设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。A若(P)无可行解,则(D)也无可行解B(P)、(D)均有可行解则都有最优解C(P)的约束均为等式,则(D)的所有变量均无非负限制D(D)也是(P)的对偶问题
问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A若原问题为无界解,则对偶问题也为无界解B若原问题无可行解,其对偶问题具有无界解或无可行解C若原问题存在可行解,其对偶问题必存在可行解D若原问题存在可行解,其对偶问题无可行解
多选题一个线性规划问题(P)与它的对偶问题(D)有关系()。A(P)有可行解则(D)有最优解B(P)、(D)均有可行解则都有最优解C(P)可行(D)无解,则(P)无有限最优解D(P)(D)互为对偶
判断题任何线性规划问题度存在并具有唯一的对偶问题。A对B错