函数在x处的导数是

函数在x处的导数是


参考解析

解析:解:选A。

相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

设函数f(x)=x3-3x2-9x.求(I)函数f(x)的导数;(1I)函数f(x)在区间[1,4]的最大值与最小值.

函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。A、必要条件B、充分条件C、充分必要条件D、既非充分又非必要条件

A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

函数在x=0处( )。A.连续,且可导B.连续,不可导C.不连续D.不仅可导,导数也连续

函数在x点的导数是:

函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()A.必要条件B.充分条件C.既非必要又非充分条件D.充要条件

函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点B.x=0不是函数(x)的极值点C.x=0是函数(x)的极小值点D.x=0是函数(x)的极大值点

下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在

函数y=ex+lnx在x=1处的导数是______。

函数y=(x+1)2(x-1)在x=1处的导数等于________ 。

函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.

在点x=0处的导数等于零的函数是(  )A.y=sinxB.y=x-1C.y=ex-xD.y=x2-x

求函数.f(x)=x2?2x在x=0处的n阶导数,f(n)(O)。

若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微

多元函数在某点处的偏导数刻划了函数在这点的变化率。

函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。

若某点是二元函数的驻点,则函数在这点处的()。A、各个偏导数大于0B、各个偏导数小于0C、各个偏导数等于0D、各二阶偏导数等于0

函数在一点处的导数就是这点处的微分。

判断题函数在一点处的导数就是这点处的微分。A对B错

判断题若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微A对B错

单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④

判断题函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。A对B错

单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。Af(x0,y)在y=y0处的导数等于零Bf(x0,y)在y=y0处的导数大于零Cf(x0,y)在y=y0处的导数小于零Df(x0,y)在y=y0处的导数不存在

判断题多元函数在某点处的偏导数刻划了函数在这点的变化率。A对B错