函数在x点的导数是:
函数在x点的导数是:
参考解析
解析:提示:利用两函数乘积的导数公式计算。
相关考题:
以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点B.一定是函数f(x)的极值点C.一定不是函数f(x)的极值点D.是否为函数f(x)的极值点,还不能确定
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点B.x=0不是函数(x)的极值点C.x=0是函数(x)的极小值点D.x=0是函数(x)的极大值点
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在
下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是( )。Af(x0,y)在y=y0处的导数等于零Bf(x0,y)在y=y0处的导数大于零Cf(x0,y)在y=y0处的导数小于零Df(x0,y)在y=y0处的导数不存在
单选题若z=xy+sinxy则函数z(x,y)在(0,1)点关于x的偏导数的值是()。A0B2C1D-1/2