设函数f(x)=x3-3x2-9x.求(I)函数f(x)的导数;(1I)函数f(x)在区间[1,4]的最大值与最小值.

设函数f(x)=x3-3x2-9x.求

(I)函数f(x)的导数;

(1I)函数f(x)在区间[1,4]的最大值与最小值.


相关考题:

设f(x)=xe-x,求函数f(x)的极值(6分)

设函数f(x)=e5x,则f(x)的n阶导数f(n)(x)=____.

若F(x)与G(x)均为f (x)在区间I上的原函数,则F(x)与G(x)相差一个_________.

求函数f(x)=x3-6x2+9x-4在闭区间[0,2]上的最大值和最小值.

已知函数f(x)=x3-4x2.(I)确定函数f(x)在哪个区问是增函数,在哪个区间是减函数;(Ⅱ)求函数f(x)在区间[0,4]上的最大值和最小值.

设函数f(x)=x4-4x+5.(I)求f(x)的单调区间,并说明它在各区间的单调性;(Ⅱ)求f(x)在区间[0,2]的最大值与最小值.

设f(x)为连续函数,F(x)是f(x)的原函数,则( )。(A) 当f(x)是奇函数时,F(x)必为偶函数(B) 当f(x)是偶函数时,F(x)必为奇函数(C) 当f(x)是周期函数时,F(x)必为周期函数(D) 当f(x)是单增函数时,F(x)必为单增函数(E) 当f(x)是单减函数时,F(x)必为单减函数

已知函数f(x)=(1/2)e2x-ax,g(x)=6xlnx,,h(x)=2e2x-4/x,a>o,b≠0。 (1)求函数f(x)的最小值;(3分) (2)求函数g(x)的单调区间;(3分) (3)证明:函数h(x)在[1/2,1]上有且仅有l个零点。(4分)

设连续型随机变量X的分布函数为F(x)=  (1)求常数A,B;(2)求X的密度函数f(x);(3)求P

设随机变量X的密度函数为f(x)=  (1)求常数A;(2)求X在内的概率;(3)求X的分布函数F(x).

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.

(本小题13分)已知函数f(x)=2x3-3x2,求(1)函数的单调区间;(2)函数f(x)在区间[-3,2]的最大值与最小值。

设函数,已知函数f(x)在x=0处可微,求

设函数,求并求f(x)的最小值.

设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(  )。A.F(x)是偶函数f(x)是奇函数B.F(x)是奇函数f(x)是偶函数C.F(x)是周期函数f(x)是周期函数D.F(x)是单调函数f(x)是单调函数

设f(x)是R上的函数,则下列叙述正确的是( )。A、f(x)f(-x)是奇函数B、f(x)|f(x)|是奇函数C、f(x)-f(-x)是偶函数D、f(x)+f(-x)是偶函数

设函数f(x)=x1nx (1)画出函数f(x)的草图。(6分) (2)若的最大值(提示利用函数f(x)的凸性)。(4分)

求函数.f(x)=x2?2x在x=0处的n阶导数,f(n)(O)。

设f(x)是连续函数,F(x)是f(x)的原函数,则()。A.当f(x)是奇函数时,F(x)必是偶函数B.当f(x)是偶函数时,F(x)必是奇函数C.当f(x)是周期函数时,F(x)必是周期函数D.当f(x)是单调增函数时,F(x)必是单调增函数

已知函数f(x)=x2+4lnx. (1)求函数f(x)在[1,e]上的最大值和最小值; (2)证明:当x∈[1,+∞)时,函数八戈)的图象在g(x)=2x3的图象的下方。

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0

填空题设f(x)=xex,则函数f(n)(x)在x=____处取最小值____。

单选题如果奇函数f(x)在区间[a,b](0<a<b)上是增函数,且最小值为2,那么f(x)在区间[-b,-a]上是(  ).A增函数且最小值为-2B增函数且最大值为-2C减函数且最小值为-2D减函数且最大值为-2

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0