设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X表示3个球中的新球个数,求X的分布律与分布函数.

设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X表示3个球中的新球个数,求X的分布律与分布函数.


参考解析

解析:

相关考题:

一个盒子中有4个球,球上分别标有号码0,1,1,2,从盒子中有放回的任意取出2个球,设X为取出的球上的号码的乘积,(1)求X的分布列;(2)P(X

一个袋子中有5只黑球3只白球,从袋中任取两只球,若以A表示:“取到的两只球均为白球”;B表示:“取到的两只球同色”。则P(A)=();P(B)=()。

袋中有5个白球和3个黑球,从中任取两球,则取得的两球颜色相同的概率为13/28。()

袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率:(1)2球恰好同色;(2)2球中至少有1红球。

一个袋子中有5个球,编号为1,2,3,4,5,同时从中任取3个,以X表示取出的3个球中的最大号码,求随机变量X的概率分布.

一袋中有5个乒乓球,其中4个白球,1个红球,从中任取2个球的不可能事件是()A.{2个球都是白球}B.{2个球都是红球}C.{2个球中至少有1个白球}D.{2个球中至少有1个红球}

袋中装有大小相同的12个球,其中5个白球和7个黑球,从中任取3个球,求这3个球中至少有1个黑球的概率.

一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.

有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.  (1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.

袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数。①求②求二维随机变量(X,Y)的概率分布。

袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2次,每次取1个,定义两个随机变量如下:    就下列两种情况,求(X,Y)的联合分布律:  (1)第一次抽取后放回;(2)第一次抽取后不放回.

袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.

袋中有50个球,其中20个新球,30个旧球,现每次取1球,无放回地取2次,则第2次取得旧球的概率是()。

袋中有8个乒乓球,其中5个白色球,3个黄色球,从中一次任取2个乒乓球,则取出的2个球均为白色球的概率为《》( )

袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。 (1)求P{X=1|Z=0}; (2)求二维随机变量(X,Y)的概率分布。

袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。 (1)求(2)求二维随机变量(X,Y)的概率分布。

一个口袋中有7个红球3个白球,从袋中任取一任球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。A.7/10B.7/15C.7/20D.7/30

袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().A、3/5B、3/4C、1/2D、3/10

袋中有4个白球2个黑球,今从中任取3个球,则至少一个黑球的概率为()A、4/5B、1C、1/5D、1/3

袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回的取2次,则第二次取到新球的概率是()。A、3/5B、3/4C、2/4D、3/10

袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。

问答题袋中有四个球,分别标有数字1,2,2,3,从袋中任取一球后,不放回,再取第二次,分别以X、Y记为第一次、第二次取得球上标有的数字. 求:(1)(X,Y)的分布律.   (2)(X,Y)的边缘分布律.   (3)X与Y是否独立?

单选题袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回的取2次,则第二次取到新球的概率是()。A3/5B3/4C2/4D3/10

问答题38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

问答题8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求: (1)第一次取到白球、第二次取到红球的概率; (2)两次取得一红球一白球的概率.

单选题袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().A3/5B3/4C1/2D3/10