设随机变量X~P(λ),且E[(X-1)(X-2)]=1,则λ=_______.
设随机变量X~P(λ),且E[(X-1)(X-2)]=1,则λ=_______.
参考解析
解析:因为X~P(λ),所以E(X)=λ,D(X)=λ,故E(X^2)=D(X)+【E(X)】^2=λ^2+λ. 由E【(X-1)(X-2)】=E(X^2—3X+2)=E(X^2)-3E(X)+2=λ^2-2λ+2=1得λ=1.
相关考题:
设随机变量X服从正态分布N(1,22),则有( )。A.P(X1)=P(X1)B.P(X2)=P(X2)C.P(X1)=P(X1)+P(X-1)D.P(X1)=P(X1)4-P(X-1)E(0X≤3)=P(-1X≤2)
设随机变量X服从正态分布N(1,22),则有( )。A.P(X1)=P(X1)B.P(X2)-P(X2)C.PD.XE.1)=P(X1)+P(X-1)F.PG.XH.1)=P(X1)4-P(X-1)P(0X≤3)=P(-1X≤2)
单选题设f(x)=x(x-1)(x-2),则方程f'(x)=0的实根个数是:A3B2C1D0