设随机变量X~N(μ,σ^2),其分布函数为F(x),则对任意常数a,有().A.F(a+μ)+F(a-μ)=1B.F(μ+a)+F(μ-a)=1C.F(a)+F(-a)=1D.F(a-μ)~-F(μ-a)=1
设随机变量X~N(μ,σ^2),其分布函数为F(x),则对任意常数a,有().
A.F(a+μ)+F(a-μ)=1
B.F(μ+a)+F(μ-a)=1
C.F(a)+F(-a)=1
D.F(a-μ)~-F(μ-a)=1
B.F(μ+a)+F(μ-a)=1
C.F(a)+F(-a)=1
D.F(a-μ)~-F(μ-a)=1
参考解析
解析:因为X~N(μ,σ^2),所以,选(B).
相关考题:
正态分布计算所依据的重要性质为( )。A.设X~N(μ,σ2),则u=(X-μ)/σ~N(0,1)B.设X~N(μ,σ2),则对任意实数a、b有P(X<b)=Ф[(b-μ)/σ)C.设X~N(μ,σ2),则对任意实数a、b有P(X>a)=1-Ф[(a-μ)/σ]D.设X~N(μ,σ2),则对任意实数a、b有P(a<X<b)=Ф[(b-μ)/σ)-Ф[(a-μ)/σ]E.设X~μ(μ1,,Y~N(μ2,,则X+Y~N(μ1+μ2,(σ1+σ2) 2)
设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().A.F(z)=F(-x)B.F(x)=F(-x)C.F(X)=F(-x)D.f(x)=f(-x)
正态分布计算所依据的重要性质为( )。A.设X~N(μ,σ2),则μ= (X-μ)/σ~N(0, 1)B.设X~N(μ,σ2),则对任意实数a、b有P(XC.设X~N(μ,σ2),则对任意实数a、b有P(X>a) =1-Φ[(a-μ)/σ]D.设X~N(μ,σ2),则对任意实数a、b有P(a
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为 A.AF^2(x)B.F(x)F(y)C.1-[1-F(x)]^2D.[1-F(x)][1-F(y)]
设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()A、1/2-F(a)B、1/2+F(a)C、2F(a)-1D、1-F(a)
设X1,X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则()A、f1(x)+f2(x)必为某一随机变量的概率密度B、f1(x)f2(x)必为某一随机变量的概率密度C、F1(x)+F2(x)必为某一随机变量的分布函数D、F1(x)F2(x)必为某一随机变量的分布函数
设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)
单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为( )。AF2(x)BF(x)F(y)C1-[1-F(x)]2D[1-F(x)][1-F(y)]
单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则( )。AP{X≤0}=P{X≥0}=0.5Bf(-x)=1-f(x)CF(x)=-F(-x)DP{X≥2}=P{X<2}=0.5
单选题设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。AF(x)+C也是f(x)的原函数,C为任意常数BF(x)=G(x)+C,C为任意常数CF(x)=G(x)+C,C为某个常数DF’(x)=G’(x)