若相邻两极点间有根轨迹,则必有();若相邻两零点间有根轨迹,则必有();分离点实际上是相同的闭环特征值,即特征方程有()。

若相邻两极点间有根轨迹,则必有();若相邻两零点间有根轨迹,则必有();分离点实际上是相同的闭环特征值,即特征方程有()。


相关考题:

若系统的根轨迹有两个起点位于原点,则说明该系统( ) A 、含两个理想微分环节B 、含两个积分环节C 、位置误差系数为0D 、速度

若两个系统的根轨迹相同,则有相同的( ) A 、闭环零点和极点B 、开环零点C 、闭环极点D 、阶跃响应

一般情况下,实轴上两个相邻的开环极点之间存在根轨迹的汇合点。() 此题为判断题(对,错)。

根轨迹终止于( )。 A.闭环零点B.开环零点C.闭环极点D.开环极点

以下关于根轨迹的描述正确的是( )。 A根轨迹起点是开环极点,终点是开环零点B根轨迹渐近线对称于实轴C分离点一定位于实轴上D分支数与开环有限零、极点中大者相同

根轨迹起点由系统的()决定。A开环极点B开环零点C闭环极点D闭环零点

若某系统的根轨迹有两个起点位于原点,则说明该系统()。A、含两个理想微分环节B、含两个积分环节C、位置误差系数为0D、速度误差系数为0

有关分离点与会合点下列说法错误的是()。A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

系统的根轨迹起始于开环极点,终止于开环零点。

系统的根轨迹起始于开环极零点,终止于开环极点。

实轴上二开环极点间有根轨迹,则它们之间必有汇合点。

实轴上二开环零点间有根轨迹,则它们之间必有汇合点。

实轴上的某一区域,若其右边开环实数零、极点个数之和为(),则该区域必是根轨迹。

以下关于控制系统根轨迹法描述正确的是:()A、根轨迹法是求解闭环系统特征方程根的一种图式法B、在已知系统开环零、极点在s平面分布的情况下,绘制系统闭环极点在s平面随某一参数变化时的运动轨迹C、绘制根轨迹时,凡是满足幅值条件的点都在根轨迹上D、根轨迹起始于系统开环极点终止于系统开环零点

若系统仅具有两个开环极点和一个开环零点,则根轨迹是()。A、圆弧B、直线C、圆弧或直线

根轨迹是指开环系统某个参数由0变化到∞,()在s平面上移动的轨迹。A、开环零点B、开环极点C、闭环零点D、闭环极点

在平面上,如果有一些闭环极点往左移动,则必有另外一些闭环极点向(),以保持每个闭环极点之和恒等于()。这一性质可用来估计根轨迹分支的变化趋势。

根轨迹始于开环极点,终止于开环零点。

如果系统的有限开环零点数m少于其开环极点数n,则当根轨迹增益趋近于无穷大时,趋向无穷远处根轨迹的渐近线共有()条。A、nB、mC、n-mD、m-n

根轨迹终止于()。A、开环极点B、开环零点C、闭环极点D、闭环零点

有关分离点与会合点下列说法错误的是是()A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

根据绘制根轨迹的基本法则,下面说法正确的有()。A、根轨迹是连续变化的曲线或直线B、根轨迹的分支数与开环传递函数无关C、根轨迹以开环极点为起点,以开环有限值零点或无穷远处为终点D、相邻两开环极点之间存在根轨迹则这两相邻极点间必有分离点

如果根轨迹位于实轴上两个相邻的开环零点之间,那么这两个零点之间必定存在()。

以下关于控制系统根轨迹法描述错误的是:()A、根轨迹法的分支数与开环有限零点数m和开环有限极点数n中的大者相等B、当开环有限零点数m小于开环有限极点数n时,有n-m条根轨迹分支终止于无穷远处C、实轴上某区域,若其右侧开环实数零、极点个数之和为偶数,则该区域具有根轨迹D、一部分根轨迹分支向右移动则必定有一部分根轨迹分支向左移动

一般情况下,两个极点间的根轨迹上至少有一个分离点。

判断题实轴上二开环零点间有根轨迹,则它们之间必有汇合点。A对B错

判断题实轴上二开环极点间有根轨迹,则它们之间必有汇合点。A对B错