根轨迹实轴上的会合点(或分离点)

根轨迹实轴上的会合点(或分离点)


相关考题:

实轴上分离点的分离角恒为()。 A、±45°B、±60°C、±90°D、±120°

根轨迹是以实轴为对称的,故根轨迹的分离、会合点均位于实轴上。() 此题为判断题(对,错)。

分离点与会合点实际上是闭环特征方程的重根。() 此题为判断题(对,错)。

当根轨迹分支在实轴上某点相遇又向复平面运动时,该交点称为根轨迹的()。 A.相遇点B.分离点C.分离极点D.会合点

以下关于根轨迹的描述正确的是( )。 A根轨迹起点是开环极点,终点是开环零点B根轨迹渐近线对称于实轴C分离点一定位于实轴上D分支数与开环有限零、极点中大者相同

根轨迹的分离、会合点位于()。 A.虚轴上B.实轴上C.以共轭形式成对出现在复平面中D.坐标轴上

若在实轴上相邻开环极点之间存在根轨迹,则在此区间上一定有分离点。() 此题为判断题(对,错)。

根轨迹是连续的,对称于实轴。() 此题为判断题(对,错)。

有关分离点与会合点下列说法错误的是()。A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

实轴上二开环极点间有根轨迹,则它们之间必有汇合点。

实轴上二开环零点间有根轨迹,则它们之间必有汇合点。

根轨迹是连续的,且以()为对称的曲线。A、X轴B、Y轴C、虚轴D、实轴

若相邻两极点间有根轨迹,则必有();若相邻两零点间有根轨迹,则必有();分离点实际上是相同的闭环特征值,即特征方程有()。

复平面上的所有零、极点是共轭的,它们到实轴上根轨迹的矢量辐角之和为零。

两条或两条以上的根轨迹分支在复平面上相遇又立即分开的点,称为根轨迹的:()A、与虚轴的交点B、起始点C、渐近线与实轴的交点D、分离点

根轨迹渐近线的交角一定在实轴上。

实轴上根轨迹右端的开环实数零点、极点的个数之和为()A、零B、大于零C、奇数D、偶数

有关分离点与会合点下列说法错误的是是()A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

根据绘制根轨迹的基本法则,下面说法正确的有()。A、根轨迹是连续变化的曲线或直线B、根轨迹的分支数与开环传递函数无关C、根轨迹以开环极点为起点,以开环有限值零点或无穷远处为终点D、相邻两开环极点之间存在根轨迹则这两相邻极点间必有分离点

滞后系统的根轨迹对称于实轴。

根轨迹的分离、会合点位于()。A、虚轴上B、实轴上C、以共轭形式成对出现在复平面中D、坐标轴上

增加一个开环极点,对系统的根轨迹有以下影响()。A、改变根轨迹在实轴上的分布B、改变根轨迹渐近线的条数、倾角和截距C、改变根轨迹的分支数D、根轨迹曲线将向左移动,有利于改善系统的动态性能

分离点与会合点实际上是闭环特征方程的重根。

根轨迹的分离点或会合点是特征方程的()。A、重根B、实根C、共轭虚根

判断题实轴上二开环零点间有根轨迹,则它们之间必有汇合点。A对B错

判断题实轴上二开环极点间有根轨迹,则它们之间必有汇合点。A对B错

单选题根轨迹的分离点或会合点是特征方程的()。A重根B实根C共轭虚根