单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④

单选题
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
A

②⇒③⇒①

B

③⇒②⇒①

C

③⇒④⇒①

D

③⇒①⇒④


参考解析

解析:
根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

函数z=f(x,y)在点(x0,y0)处连续是z=f(x,y)在点(x0,y0)处存在一阶偏导数的(58)。A.充分条件B.必要条件C.充要条件D.既非充分,又非必要条件

函数z=f(x,y)处可微分,且fx'(x0,y0)=0,fy'(x0,:y0)=0,则f (x,y)在P0(x0,y0)处有什么极值情况?A.必有极大值B.必有极小值C.可能取得极值D.必无极值

函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。A、必要条件B、充分条件C、充分必要条件D、既非充分又非必要条件

若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。

函数y=f(x) 在点x=x0处取得极小值,则必有:A. f'(x0)=0B.f''(x0)>0C. f'(x0)=0且f''(x0)>0D.f'(x0)=0或导数不存在

函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?A.必有极大值 B.必有极小值C.可能取得极值 D.必无极值

函数y = f (x)在点x = x0,处取得极小值,则必有:

若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微

若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A、连续B、偏导数存在C、偏导数连续D、切平面存在

对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A、必要条件而非充分条件B、充分条件而非必要条件C、充分必要条件D、既非充分又非必要条件

若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

下列四类函数中,有性质“对任意的x0,y0,函数f(x)满足f(x+y)=f(x)f(y)”的是()。A、幂函数B、对数函数C、指数函数D、余弦函数

下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

单选题以下关于二元函数的连续性的说法正确是(  )。A若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D以上说法都不对

判断题若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微A对B错

单选题对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A必要条件而非充分条件B充分条件而非必要条件C充分必要条件D既非充分又非必要条件

单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④

判断题若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.A对B错

单选题二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。A充分条件B必要条件C充要条件D以上都不是

单选题设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。A取得极大值B取得极小值C在x0点某邻域内单调增加D在x0点某邻域内单调减少

单选题设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。A若fx′(x0,y0)=0,则fy′(x0,y0)=0B若fx′(x0,y0)=0,则fy′(x0,y0)≠0C若fx′(x0,y0)≠0,则fy′(x0,y0)=0D若fx′(x0,y0)≠0,则fy′(x0,y0)≠0

单选题若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A连续B偏导数存在C偏导数连续D切平面存在

单选题函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()A必有极大值B必有极小值C可能取得极值D必无极值

单选题y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。A在x0点取得极大值B在x0的某邻域单调增加C在x0点取得极小值D在x0的某邻域单调减少

单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。Af(x0,y)在y=y0处的导数等于零Bf(x0,y)在y=y0处的导数大于零Cf(x0,y)在y=y0处的导数小于零Df(x0,y)在y=y0处的导数不存在