考虑一个具有如下生产函数的经济体:Y=AK0.4 L0.6,其中K为资本,L为劳动。 设A=1,计算人均生产函数。

考虑一个具有如下生产函数的经济体:Y=AK0.4 L0.6,其中K为资本,L为劳动。 设A=1,计算人均生产函数。


参考解析

解析:若A=1,则有生产函数为Y= K0. 4 L0.6,从而有:

此即为人均生产函数。

相关考题:

假若两个经济体采取的总量生产函数形式都为Y=AK^αL^(1-α),但是根据各自的禀赋结构(资本劳动比)选择最优的生产函数的资本密集,第一个经济体的资本为10000单位,第二个经济体的资本为100单位,第二经济体的劳动为10000单位,第一个经济体的劳动为100单位,那么第一个经济体的劳均收入是第二经济体的多少倍()。 A.50倍B.100倍C.50^(2/3)倍D.约37倍

在总量生产函数Y=AK^αL^(1-α)设定下,按照新结构生产理论的结构变迁方程内生最优生产函数之后,如果GDP(Y)为e^10,资本存量(K)为e^6,劳动(L)为e^3,索罗剩余(A)是()。 A.e^4B.e^6C.e^7D.e^5

考虑一个具有如下生产函数的经济体:Y=AK0.4 L0.6,其中K为资本,L为劳动。 假设每年的折旧率δ为5%,考虑简单的索罗增长模型,稳态时,求出人均资本存量的黄金律以及该黄金律水平下的人均产量水平、人均投资水平、人均消费水平。

已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。

假定产出是根据含有失业率的生产函数Y= Kα[(l-u*)L]1-α 来表示的。在上式中,K为资本,L为劳动力,u*为自然失业率。国民储蓄率为s,劳动力增长率为n,资本折旧率为δ。 请把人均产出(y=Y/L)表示为人均资本(k=K/L)和自然失业率的函数。

假设一个经济的人均生产函数为y=k,其中k为人均资本:求: (1)经济的总量生产函数。 (2)在没有人口增长和技术进步的情况下,假定年折旧率为δ=10%,储蓄率为s=40%。那么稳态下的人均资本、人均产出和人均消费分别为多少?

考虑如下经济模型:生产方程:Y=F(K,L)=KαL1-α其中K为资本存量,L为工人数量。产出的一部分被用于消费,另一部分是储蓄为S。所有的储蓄被用于投资。资本存量的折旧率为ζ。假设技术进步和人口增长均为零。计算稳态时的人均资本量,人均产出和人均消费

在索罗增长模型( Solow model)中,假设生产函数为柯布一道格拉靳函数Y=KaL1-a,已知n、g、б 、a。 (1)写出生产函数的简约形式y=f(k),其中y为人均产出,是为人均资本存量。 (2)已知s值,求解稳定状态下的y*、k*、c*。 (3)当s值未知时,求解黄金规则水平下的稳态y*、k*、s*、c*。

设在新古典增长模型的框架下,生产函数为Y=F(K,L)=(1)求人均生产函数y=f(k)。 (2)若不存在技术进步,求稳态下的人均资本量、人均产量和人均消费量。

假设生产函数为Y=KaL1-a,其中,a=l/3,K表示资本,L表示劳动力。 (1)该生产函数是否具有规模收益不变的特征?请解释。 (2)假设该经济的劳动力刚好等于总人口,请将上述生产函数变化成人均产出与人均资本之间的关系。 (3)假设该经济每年的储蓄率为8/25,资本每年的折旧率为2/25。求稳态人均资本和稳态人均产出。 (4)现假设资本折旧率变为1/12,其他假设不变,请问当经济实现稳态时,若要使人均消费最大化,该经济的储蓄率应该是多少?人均消费达到最大化时,该经济的人均资本是多少?此时的人均消费是多少?

假定产出是根据含有失业率的生产函数Y= Kα[(l-u*)L]1-α 来表示的。在上式中,K为资本,L为劳动力,u*为自然失业率。国民储蓄率为s,劳动力增长率为n,资本折旧率为δ。 计算该经济的稳态的人均资本和人均产出。

考虑柯布一道格拉斯生产函数其中K袁示资本存量,L表示劳动量,要素价格分别是r和w。 (1)求短期成本函数STC(r,w,Y)(短期生产假定资本存量保持不变)。 (2)求长期成本函数LTC(r,w,Y)。 (3)讨论参数a、β的取值与规模报酬之间的关系。

假定经济体的总量生产函数为Y=K0.5L0.5,在2012年,人均产出为4,投资率为0.5,劳动增长率为1%,资本折旧率为9%。 (1)经济体稳态的劳动资本存量是多少? (2)黄金律水平的劳动资本存量是多少? (3)画图分析这个经济体人均产出的可能变化趋势。

考虑一个具有如下生产函数的经济体:Y=AK0.4 L0.6,其中K为资本,L为劳动。 在一般化(A不等于常数)的生产函数中,你认为A可能包含哪些影响经济长期增长的因素,这些是否可能与资本K或劳动L相关?

已知新古典增长模型中人均生产函数为y=f(k) =2k-0. 5k2,最为人均资本,储蓄率s为0.4,人口增长率以为0.2%。 请计算: (1)经漭达到稳定状态的值。 (2)黄金律所要求的人均资本k值

在新古典增长模型中,生产函数为y=f(k)=2k-0. 5k2,人均储蓄率为s-0.3,设人口增长率为3%,求:(1)使经济均衡增长的k值。(2)黄金律所要求的人均资本量。

已知生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。储蓄率为0.1,人口增长率为0.05,假设资本折旧为0,稳态时人均产出为()。A、1.2B、1C、1.25D、1.5

已知某经济社会生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。平均储蓄倾向s为0.1,人口增长率n为0.05,求 (1)均衡资本——劳动比率; (2)均衡人均产出、均衡人均储蓄和均衡人均消费

在新古典增长模型中,人均生产函数为y=f(k)=2k-0.5k*k,人均储蓄率为0.3,设人口增长率为3%。试求经济增长的k值。

已知某企业的生产函数为Q=50L^(3/5)K^(3/5)(Q为产量,L为劳动,K为资本),则()A、生产函数为规模报酬递增B、生产函数为规模报酬递减C、生产函数为规模报酬不变D、生产要素报酬递增E、生产要素报酬递减

计算题:设一个国家的总量生产函数是:y=k其中y和k分别指人均产出和人均资本。如果储蓄率为28%,人口增长率为1%,技术进步率为2%,折旧率为4%,该国稳定状态的产出是多少?如果储蓄率下降到10%,而人口增长率上升到4%,其他不变,那么该国新的稳定状态产出又是多少?

问答题在新古典增长模型中,集约化生产函数为Y=f(k)=2k-0.5k2,人均储蓄率为0.3,设人口增长率为3%,求:(1)使经济均衡增长的k值;(2)黄金分割律所要求的人均资本量。

单选题设生产函数为Q=ALαKβ,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的常数,则当Q=1时,K对于L的弹性为(  )。Aβ/αB-β/αC-α/βDα/β

问答题已知某经济社会生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。平均储蓄倾向s为0.1,人口增长率n为0.05,求 (1)均衡资本——劳动比率; (2)均衡人均产出、均衡人均储蓄和均衡人均消费

单选题已知生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。储蓄率为0.1,人口增长率为0.05,假设资本折旧为0,稳态时人均产出为()。A1.2B1C1.25D1.5

填空题设生产函数为Q=ALαKβ,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的常数,则当Q=1时,K对于L的弹性为____。

问答题已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。