假设甲公司股票现在的市价为8元,有1股以该股票为标的资产的看涨期权,执行价格为9元,到期时间是9个月。9个月后股价有两种可能:上升30%或者降低10%,无风险利率为每年4%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合9个月后的价值与购进该看涨期权相等。  要求:(结果均保留两位小数)  (1)确定可能的到期日股票价格;  (2)根据执行价格计算确定到期日期权价值;  (3)计算套期保值率;  (4)计算购进股票的数量和借款数额;  (5)根据上述计算结果计算期权价值。

假设甲公司股票现在的市价为8元,有1股以该股票为标的资产的看涨期权,执行价格为9元,到期时间是9个月。9个月后股价有两种可能:上升30%或者降低10%,无风险利率为每年4%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合9个月后的价值与购进该看涨期权相等。
  要求:(结果均保留两位小数)
  (1)确定可能的到期日股票价格;
  (2)根据执行价格计算确定到期日期权价值;
  (3)计算套期保值率;
  (4)计算购进股票的数量和借款数额;
  (5)根据上述计算结果计算期权价值。


参考解析

解析: (1)上行股价=8×(1+30%)=10.4(元)
  下行股价=8×(1-10%)=7.2(元)
  (2)股价上行时期权到期日价值
  =上行股价-执行价格=10.4-9=1.4(元)
  股价下行时期权到期日价值=0
  (3)套期保值比率=期权价值变化/股价变化=(1.4-0)/(10.4-7.2)=0.4375
  (4)购进股票的数量=套期保值比率=0.4375(股)
  借款数额=(H×Sd-Cd)/(1+r)=(7.2×0.4375)/(1+4%×9/12)=3.06(元)
  (5)期权价值=购买股票支出-借款=8×0.4375-3.06=0.44(元)

相关考题:

根据材料回答8~11题:假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。在该组合中,购进股票的数量为( )股。A.0.3464B.0.4346C.0.4643D.0.6434

假设某公司的股票现在的市价为60元。有1股以该股票为标的资产的看涨期权,执行价格为62元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%,则利用复制原理确定期权价格时,下列复制组合表述正确的是( )。A.购买0.4536股的股票B.以无风险利率借入28.13元C.购买股票支出为30.85元D.以无风险利率借入30.26元

假设甲公司股票的现行市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为22.25元。到期时间为8个月,分为两期,每期4个月,每期股价有两种可能:上升25%或下降20%。无风险利率为每个月0.5%。要求:(1)计算8个月后各种可能的股票市价以及期权到期日价值;(2)按照风险中性原理计算看涨期权的现行价格。

假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间是6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险报酬率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。<1>、确定可能的到期日股票价格;<2>、根据执行价格计算确定期权到期日价值;<3>、计算套期保值比率;<4>、计算购进股票的数量和借款数额;<5>、根据上述计算结果计算期权价值;<6>、根据风险中性原理计算期权的现值(假设股票不派发红利)。

假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。

假设甲公司股票现在的市价为10元,有1股以该股票为标的资产的看涨期权,执行价格为12元,到期时间是9个月。9个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合9个月后的价值与购进该看涨期权相等。  要求:(1)确定可能的到期日股票价格;(2)根据执行价格计算确定到期日期权价值;(3)计算套期保值比率;(4)计算购进股票的数量和借款数额;(5)计算期权的价值。

假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。则下列计算结果正确的有( )。 A.在该组合中,购进股票的数量0.4643股B.在该组合中,借款的数量为27.31元C.看涨期权的价值为9.834元D.购买股票的支出为37.144元

假设ABC 公司的股票现在的市价为80 元。有1 股以该股票为标的资产的看涨期权,执行价格为85 元,到期时间6 个月。6 个月以后股价有两种可能:上升33.33%,或者降低25%。无风险报酬率为每年4%。则使用套期保值原理估算出该看涨期权价值为( )元。A.21.664B.37.144C.27.31D.9.834

假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间是6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。 (1)确定可能的到期日股票价格; (2)根据执行价格计算确定期权到期日价值; (3)计算套期保值比率; (4)计算购进股票的数量和借款数额; (5)根据上述计算结果计算期权价值; (6)根据风险中性原理计算期权的现值(假设股票不派发红利)。

假设C公司股票现在的每股市价为10元,有1股以该股票为标的资产的看涨期权,执行价格为6元,到期时间为6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年4%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。要求:(1)确定可能的到期日股票价格。(2)根据执行价格计算确定期权到期日价值。(3)计算套期保值比率。(4)计算购进股票的数量和借款数额。(5)根据上述结果计算期权价值。(6)如果该看涨期权的现行价格为6.12元,请根据套利原理,构建一个投资组合进行套利,并计算获利金额。

假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40% ,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。要求:(1)计算利用复制原理所建组合中股票的数量为多少?(2)计算利用复制原理所建组合中借款的数额为多少?(3)期权的价值为多少?(4)若期权价格为4元,建立一个套利组合。(5)若期权价格为3元,建立一个套利组合。

假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:计算利用复制原理所建组合中股票的数量为多少?

假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:若期权价格为4元,建立一个套利组合。

假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。 要求:期权的价值为多少?

问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。要求:利用单期二叉树定价模型确定期权的价值。

问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。如果该看涨期权的现行价格为4元,请根据套利原理,构建一个投资组合进行套利。

问答题计算分析题:假设C公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为15元,到期时间为6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。要求:(1)确定可能的到期日股票价格;(2)根据执行价格计算确定期权到期日价值;(3)计算套期保值比率;(4)计算购进股票的数量和借款数额;(5)根据上述计算结果计算期权价值;(6)根据风险中性原理计算期权的现值(假设期权期限内标的股票不派发红利)。

问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。要求:若期权价格为3元,建立一个套利组合。

多选题假设ABC公司的股票现在的市价为80元。有1股以该股票为标的资产的看涨期权,执行价格为85元,到期时间6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险报酬率为每年4%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。则下列计算结果正确的有()。A在该组合中,购进股票的数量0.4643股B在该组合中,借款的数量为27.31元C看涨期权的价值为9.834元D购买股票的支出为37.144元

多选题假设ABC公司的股票现在的市价为60元。有1股以该股票为标的资产的看涨期权,执行价格为65元,到期时间6个月。6个月以后股价有两种可能:上升40%,或者降低28.57%。无风险利率为每年6%。现拟建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得6个月后该组合的价值与看涨期权相等。则下列计算结果正确的有(  )。A在该组合中,购进股票的数量0.4618股B在该组合中,借款的数量为19.22元C购买股票的支出为59.42元D下行概率为53.96%

问答题假设A公司目前的股票价格为20元/股,以该股票为标的资产的看涨期权到期时间为6个月,执行价格为24元,预计半年后股价有两种可能,上升30%或者下降23%,半年的无风险利率为4%。要求:  (1)用复制原理计算该看涨期权的价值;  (2)用风险中性原理计算该看涨期权的价值;  (3)如果该看涨期权的现行价格为2.5元,请根据套利原理,构建一个投资组合进行套利。

问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。期权的价值为多少?

问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险利率为每年4%。要求:利用风险中性原理确定期权的价值。

问答题假设阳光股份公司股票现在的市价为20元,有1股以该股票为标的资产的看涨期权,执行价格为21元,到期时间是6个月。6个月后股价有两种可能:上升25%或者降低20%,无风险年利率为8%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合6个月后的价值与购进该看涨期权相等。假设股票不派发红利。  要求:  (1)根据复制原理计算期权价值;  (2)根据风险中性原理计算期权价值。

问答题假设ABC公司的股票现在的市价为30元。有1份以该股票为标的资产的看涨期权,执行价格为30.5元,到期时间是6个月。6个月以后股价有两种可能:上升35%,或者下降20%。无风险利率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合6个月后的价值与购进该看涨期权相等。计算利用复制原理所建组合中借款的数额为多少?

问答题假设甲公司股票现在的市价为10元,有1股以该股票为标的资产的看涨期权,执行价格为6元,到期时间是9个月。9个月后股价有两种可能:上升25%或者降低20%,无风险利率为每年6%。现在打算购进适量的股票以及借入必要的款项建立一个投资组合,使得该组合9个月后的价值与购进该看涨期权相等。  要求:  (1)确定可能的到期日股票价格;  (2)根据执行价格计算确定到期日期权价值;  (3)计算套期保值比率;  (4)计算购进股票的数量和借款数额;  (5)根据上述计算结果计算期权价值;  (6)根据风险中性原理计算期权的现值(假设股票不派发红利)。

问答题假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者下降30%。无风险报酬率为每年4%。拟利用复制原理,建立一个投资组合,包括购进适量的股票以及借入必要的款项,使得该组合1年后的价值与购进该看涨期权相等。要求:计算利用复制原理所建组合中借款的数额为多少?