考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 写下此时该经济体在q-R空间的生产可能性前沿函数。该生产可能性集是凸集吗?
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 写下此时该经济体在q-R空间的生产可能性前沿函数。该生产可能性集是凸集吗?
参考解析
解析:
相关考题:
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 写下该经济体在q-R空间的生产可能性前沿函数。该生产可能性集是凸集吗?
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。请解出该经济体最优的生产和消费。请问该资源分配方式可以通过完全竞争市场均衡实现吗?如果是,请求出市场均衡(包括均衡价格和均衡数量)。设食品的价格为p,劳动力价格为W。如果不是,请解释为什么。 下面考虑生产函数q=AL2
设生产函数为柯布道格拉斯函数Q=L^(1/3)K^(2/3),己知劳动力和资本的价格分别是w=1和r =2, (1)该生产函数代表了哪种类型的规模收益? (2)设企业的生产成本为3000,求两种要素的投入数量与总产量。 (3)设企业的生产产量为800,求两种要素的投入数量与企业所需付出的成本。
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 请写出新生产函数下该经济体最优的生产和消费。请问该资源分配方式可以通过完全竞争市场均衡实现吗?如果是,请求出市场均衡解。(包括均衡价格和均衡数量)。设食品的价格为p,劳动力的价格为w。如果不是,请解释为什么。
判断题罗宾逊和撕拉伐是理论经济学的最后争论者。A对B错