考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 请写出新生产函数下该经济体最优的生产和消费。请问该资源分配方式可以通过完全竞争市场均衡实现吗?如果是,请求出市场均衡解。(包括均衡价格和均衡数量)。设食品的价格为p,劳动力的价格为w。如果不是,请解释为什么。
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 请写出新生产函数下该经济体最优的生产和消费。请问该资源分配方式可以通过完全竞争市场均衡实现吗?如果是,请求出市场均衡解。(包括均衡价格和均衡数量)。设食品的价格为p,劳动力的价格为w。如果不是,请解释为什么。
参考解析
解析:
相关考题:
在完全竞争市场下,某厂商的需求函数和供给函数分别为:Q=5 000-200P 和Q=4 000+300P。以下说法正确的是( )。A.该厂商的市场均衡价格为P=4B.该厂商的市场均衡产量为Q=4 600C.该厂商的市场均衡产量为Q=4 500D.该厂商的市场均衡价格为P=2
假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。 写下该经济体在q-R空间的生产可能性前沿函数。该生产可能性集是凸集吗?
考虑一个罗宾逊孤岛模型。罗宾逊在岛上生产食品,生产函数为g=AL1/2,A>0,其中q为食品产量,L是劳动力投入使用量,A为外生参数。罗宾逊把每天24小时的时间在劳动(L)和休闲(R)之间进行分配。罗宾逊的效用函数是U=1nc+lnR,其中c为食品的消费数量。请解出该经济体最优的生产和消费。请问该资源分配方式可以通过完全竞争市场均衡实现吗?如果是,请求出市场均衡(包括均衡价格和均衡数量)。设食品的价格为p,劳动力价格为W。如果不是,请解释为什么。 下面考虑生产函数q=AL2
已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。
假定某完全竞争市场的需求函数为Qd= 68 -4P,行业的短期供给函数为Qs= -12 +4P: (1)求该市场的短期均衡价格和均衡产量。 (2)在(1)的条件下,该市场的消费者剩余、生产者剩余和社会总福利分别是多少? (3)假定政府对每一单位商品征收2元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?此外,消费者剩余、生产者剩余和社会总福利的变化又分别是多少?
完全竞争市场上,厂商生产要素为x1,x2,面对的是竞争性要素需求市场,两种要素的价格都为2,每个企业的固定成本为64。单个厂商的生产函数为消费者对该产品的需求函数为Q=280-5p,其中p为产品的市场价格 长期均衡时候企业个数
已知某企业的生产函数为Q=,L^(2/3)K^(1/3),劳动的价格,w=2,资本的价格r =1:求 (1)当成本C=3000时,企业实现最大产量时的L、K和Q的均衡值。 (2)当产量Q=800时,企业实现最小成本时的L、K和C的均衡值:
考虑以下古诺竞争模型。市场中有N个企业,生产相同的产品,均没有生产成本。市场需求函数为P=a-bQ,其中a,b>0,Q为行业总产量。如果企业同时展开产量竞争,那么: (1)均衡时价格是多少? (2)此时消费者剩余是多少?
在一个完全竞争的市场,企业使用两种原材料,记为1和2.两种原材料的市场价格均为1每个企业的固定成本为F =32,生产函数为f(x1,x2)=4 x1x2,其中x1是原材料i的使用量。消费者对该产品的需求函数为Q =280 -5p,其中p为市场价格。请找出这个市场的长期均衡价格和企业个数.
完全竞争市场上,厂商生产要素为x1,x2,面对的是竞争性要素需求市场,两种要素的价格都为2,每个企业的固定成本为64。单个厂商的生产函数为消费者对该产品的需求函数为Q=280-5p,其中p为产品的市场价格 长期均衡时的单个企业产量和价格
A企业生产矿泉水,其所在的市场为完全竞争市场。A的短期成本函数为C(q)=20+5q十q2,其中20为企业的固定成本。 (1)请推导出A企业的短期供给曲线。 (2)当市场价格为15时,短期均衡的利润为多少?此时的生产者剩余是多少? (3)若产量大于0时,长期成本函数C(q) =9+4q+q2,则长期均衡的产出是多少?长期均衡的利润为多少?
设一厂商使用的可变要素为劳动L,其生产函数为Q= -O. O1L3+L2+38L 其中,Q为每日产量,L为每日投入的劳动小时数,所有市场(劳动市场及产品市场)都是完全竞争的,单位产品价格为0. 10美元,小时工资为5美元,厂商要求利润最大化。问厂商每天雇用多少小时的劳动?
假设某商品需求函数为Q=100-2P,供给函数为Q=20+6P。 (1)该商品的市场均衡价格和销售量是多少? (2)如果政府对该商品征收每单位商品4元的数量税,市场均衡的销售量是多少?消费者支付的价格和生产商接受的价格分别是多少?税收负担如何分配? (3)如果商品供给函数变为Q= 40+6P,题目(1)和(2)中的答案该如何变化?
单选题劳动力资源最优分配的前提条件是()。A在完全竞争的市场,劳动力市场不均衡B在完全竞争的市场,劳动力市场实现均衡C在非完全竞争的市场,劳动力市场实现均衡D在长期竞争的市场,劳动力市场实现均衡
单选题1953年()发表了《生产函数和资本理论》一文,对新古典综合派的资本理论进行了猛烈抨击。A斯拉法B琼·罗宾逊C帕西内蒂D约翰·伊特韦尔