单选题设f(x)在(-a,a)是连续的偶函数,且当0()Af(0)是f(x)在(-a,A.的极大值,但不是最大值BB.f(0)是f(x)在(-a,的最小值CC.f(0)足f(x)在(-a,的极大值,也是最大值Df(0)是曲线y=f(x)的拐点的纵坐标
单选题
设f(x)在(-a,a)是连续的偶函数,且当0()
A
f(0)是f(x)在(-a,A.的极大值,但不是最大值
B
B.f(0)是f(x)在(-a,的最小值
C
C.f(0)足f(x)在(-a,的极大值,也是最大值
D
f(0)是曲线y=f(x)的拐点的纵坐标
参考解析
解析:
暂无解析
相关考题:
设f(x)为连续函数,F(x)是f(x)的原函数,则( )。(A) 当f(x)是奇函数时,F(x)必为偶函数(B) 当f(x)是偶函数时,F(x)必为奇函数(C) 当f(x)是周期函数时,F(x)必为周期函数(D) 当f(x)是单增函数时,F(x)必为单增函数(E) 当f(x)是单减函数时,F(x)必为单减函数
设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。A.f(0)是f(x)在(-a,a)的极大值,但不是最大值B.f(0)是f(x)在(-a,a)的最小值C.f(0)是f(x)在(-a,a)的极大值,也是最大值D.f(0)是曲线y=f(x)的拐点的纵坐标
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,则在(- ∞ ,0)内必有:(A) f ' > 0, f '' > 0 (B) f ' 0(C) f ' > 0, f ''
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
设f(x)在(-a,a)是连续的偶函数,且当0A. f(0)是f(x)在(-a,a)的极大值,但不是最大值B. f(0)是f(x)在(-a,a)的最小值C. f(0)是f(x)在(-a,a)的极大值,也是最大值D. f(0)是曲线y=f(x)的拐点的纵坐标
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。A. f'(x)>0,f''(x)>0 B. f(x) 0C. f'(x)>0,f''(x)
设f(x)是连续函数,F(x)是f(x)的原函数,则()。A.当f(x)是奇函数时,F(x)必是偶函数B.当f(x)是偶函数时,F(x)必是奇函数C.当f(x)是周期函数时,F(x)必是周期函数D.当f(x)是单调增函数时,F(x)必是单调增函数
设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否为奇函数不能确定
设f(x)在(-a,a)是连续的偶函数,且当0()A、f(0)是f(x)在(-a,A.的极大值,但不是最大值B、B.f(0)是f(x)在(-a,的最小值C、C.f(0)足f(x)在(-a,的极大值,也是最大值D、f(0)是曲线y=f(x)的拐点的纵坐标
设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否是偶函数不能确定
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
单选题设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。Af'(x)0,f"(x)0Bf'(x)0,f"(x)0Cf'(x)O,f"(x)0Df'(x)0,f"(x)0
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()Af′(x)0,f″(x)0Bf′(x)0,f″(x)0Cf′(x)0,f″(x)0Df′(x)0,f″(x)0
问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。