运用认识论相关原理分析下列问题: ①既然在数学领域2+5=7是颠扑不破的,为什么在艺术领域2+5=10000也是可能的? ②在认识活动中,正确处理理性与非理性的关系对科学创新有何重要意义?
运用认识论相关原理分析下列问题: ①既然在数学领域2+5=7是颠扑不破的,为什么在艺术领域2+5=10000也是可能的? ②在认识活动中,正确处理理性与非理性的关系对科学创新有何重要意义?
相关考题:
下列关于数学和艺术的关系的说法中,正确的是:() A.数学和艺术是完全不相关的两个领域B.数学就是艺术,艺术就是数学C.艺术中的形式美法则和数学有着深入联系D.数学是理性的代表,数学家必须尽可能的去除感性
闻一多有一次给学生上课,他走上讲台,先在黑板上写了一道算术题:2+5=?学生们疑惑不解。然而闻先生却执意要问:2+5=?同学们于是回答:“等于7嘛!”闻先生说:“不错。在数学领域里2+5=7,这是天经地义的颠扑不破的。但是,在艺术领域里,2+5=10000也是可能的。”他拿出一幅题为《万里驰骋》的图画叫学生们欣赏,只见画面上突出地画了两匹奔马,在这两匹奔马后面,又错落有致、大小不一地画了五匹马,这五匹马后面便是许多影影绰绰的黑点点了。闻先生推着画说:“从整个画面的形象看,只有前后七匹马,然而,凡是看过这幅画的人,都会感到这里有万马奔腾,这难道不是2+5==10000吗?”应用认识论相关原理分析下列问题: 在认识活动中,正确处理理性与非理性的关系对科学创新有何重要意义?
闻一多有一次给学生上课,他走上讲台,先在黑板上写了一道算术题:2+5=?学生们疑惑不解。然而闻先生却执意要问:2+5=?同学们于是回答:“等于7嘛!”闻先生说:“不错。在数学领域里2+5=7,这是天经地义的颠扑不破的。但是,在艺术领域里,2+5=10000也是可能的。”他拿出一幅题为《万里驰骋》的图画叫学生们欣赏,只见画面上突出地画了两匹奔马,在这两匹奔马后面,又错落有致、大小不一地画了五匹马,这五匹马后面便是许多影影绰绰的黑点点了。闻先生推着画说:“从整个画面的形象看,只有前后七匹马,然而,凡是看过这幅画的人,都会感到这里有万马奔腾,这难道不是2+5==10000吗?”应用认识论相关原理分析下列问题: 既然在数学领域2 +5=7是颠扑不破的,为什么在艺术领域2+5=10000也是可能的?
16、振动信号频率分析的数学基础是 变换;在工程实践中,常运用快速傅里叶变换的原理制成 ,这是故障诊断的有力工具。