问答题阅读下面材料,回答问题。 课堂实录;长方形和正方形的特征。 张老师:你是如何验证正方形的四个角都是直角的? 学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。 张老师:都是这样比的吗? 学生显然没有完全明白老师的意思,异口同声地回答:是的。 教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢? 学生2:只要比两次就行了。 张老师:怎么比? 学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。 学生3:我只要比一次就行了。 教师让学生3操作给大家看。 学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重在一起了,所以只要比一次就行了。 在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。 教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。 问题(一):张老师在教学中使用了什么教学方法?(10分) 问题(二):这种教学方法的基本原则是什么?(10分)

问答题
阅读下面材料,回答问题。  课堂实录;长方形和正方形的特征。  张老师:你是如何验证正方形的四个角都是直角的?  学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。  张老师:都是这样比的吗?  学生显然没有完全明白老师的意思,异口同声地回答:是的。  教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?   学生2:只要比两次就行了。   张老师:怎么比?   学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。   学生3:我只要比一次就行了。   教师让学生3操作给大家看。   学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重在一起了,所以只要比一次就行了。   在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。   教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。   问题(一):张老师在教学中使用了什么教学方法?(10分)   问题(二):这种教学方法的基本原则是什么?(10分)

参考解析

解析:

相关考题:

知道了“长方形的四个顶角都是直角”,而正方形是长方形的一个特例,那就很容易理解“正方形的四个顶角都是直角”。这种同化模式属于( )。A.上位学习B.下位学习C.组合学习D.推里学习

按照新观念对原有观念影响的大小,下位学习可以分为两种形式:一种是派生类属,另一种是相关类属。知道了“长方形的四个顶角都是直角”,而正方形是长方形的一种特例,那就很容易理解“正方形的四个顶角都是直角”,即新内容纳入可以扩展、修饰或限定学生已有的概念、命题,并使其精确化,这种学习就是相关归属学习。

知道了“长方形的四个顶角都是直角”,而正方形是长方形一个特例,那就很容易理解“正方形的四个顶角都是直角”。这种同化模式属于( )A、上位学习B、下位学习C、组合学习D、推理学习

只有一个角是直角的四边形,就是长方形或正方形。( )此题为判断题(对,错)。

课堂实录:长方形和正方形的特征 张老师:“正方形的四个角都是直角”,你是如何验证的?生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。 张老师:都是这样比的吗?学生显然没有完全明白老师的意思,异口同声地回答:是的。 教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?生2:只要比两次就行了。 张老师:怎么比?生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。 生3:我只要比一次就行了。 教师让生3操作给大家看。 生3:把正方形先横着对折一次,再竖着对折~次。原来四个角就全部重在一起了,所以只要比一次就行了。 在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。 教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。 联系案例回答问题:(1)张老师在教学中使用了什么教学方法?(2)这种教学方法的基本原则是什么?

阅读下面材料,回答问题。在课堂上,教师让学生“列举砖头的用处”时,学生小方的回答是“造房子,造仓库,造学校,铺路”,学生小明的回答是“盖房子,盖花坛,打狗,敲钉”。问题:请问小方和小明的回答如何?你更欣赏哪种回答?为什么?请根据思维的原理进行分析。

如图,由四个全等的小长方形拼成一个大正方形,每个长方形的面积都是1,且长与宽之比大于等于2,则这个大正方形的面积至少为 ()。A.3B.4.5C.5D.5.5

如图,由四个全等的直角三角形拼成一个大正方形,每个三角形的面积都是1,且两直角边之比大于等于2,则这个大正方形的面积至少是()。A.4B.5C.6D.7

如图9所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为__________。

阅读下面材料,回答问题。  课堂实录:长方形和正方形的特征。  张老师:你是如何验证正方形的四个角都是直角的?  学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。  张老师:都是这样比的吗?  学生显然没有完全明白老师的意思,异1:2同声地回答:是的。  教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?  学生2:只要比两次就行了。  张老师:怎么比?  学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。  学生3:我只要比一次就行了。  教师让学生3操作给大家看。  学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重在一起了,所以只要比一次就行了。  在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。  教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。  问题(一):张老师在教学中使用了什么教学方法?(10分)  问题(二):这种教学方法的基本原则是什么?(10分)

课堂实录:长方形和正方形的特征。张老师:你是如何验证正方形的四个角都是直角的?学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。张老师:都是这样比的吗?学生显然没有完全明白老师的意思,异口同声地回答:是的。教师注意到只有两个学生(生2和生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?学生2:只要比两次就行了。张老师:怎么比?学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。学生3:我只要比一次就行了。教师让学生3操作给大家看。学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重合在一起了,所以只要比一次就行了。在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。(1)张老师在教学中使用了什么教学方法?(2)这种教学方法的基本原则是什么?

在教学《长方形和正方形周长》时,张老师将能够正确计算长方形和正方形的周长拟定为教学目标之一,该目标属于( )A、知识性目标B、过程性目标C、技能性目标D、情感性目标

课堂实录:长方形和正方形的特征。张老师:你是如何验证正方形的四个角都是直角的学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角比较)。张老师:都是这样比的吗学生们显然没有完全明白老师的意思,异口同声地回答:是的。教师注意到只有两位学生(生2和生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢学生2:只要比两次就行了。张老师:怎么比学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。学生3:我只要比一次就行了。教师让学生3操作给大家看。学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重合在一起了,所以只要比一次就行了。在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。教师通过提问,引导、启发学生思考,采用多种方法提升学生思维能力。问题:(1)张老师在教学中使用了什么教学方法(2)这种教学方法的基本要求是什么

执教人教版“长方形和正方形周长的计算”,一位数学教师制定如下教学目标:(i)掌握长方形和正方形周长的计算公式;C2)利用长方形和正方形周长的计算公式解决有关问题,培养学生运用知识解决实际问题的能力。你认为这一教学目标存在的主要问题是()。A、太过简单B、太过复杂C、空洞不明D、期望过高

列管式换热器管子在管板上的排列有()。A、三角形排列、长方形和正方形排列B、长方形排列和正方形排列C、长方形排列和圆形排列D、三角形排列和正方形排列

一个四边形,有两组对边平行,四个角都是直角,这个图形不可能是()。A、平行四边形B、长方形C、正方形

课堂实录:长方形和正方形的特征 张老师:“正方形的四个角都是直角”,你是如何验证的? 生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。 张老师:都是这样比的吗? 学生显然没有完全明白老师的意思,异口同声地回答:是的。 教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢? 生2:只要比两次就行了。 张老师:怎么比? 生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。 生3:我只要比一次就行了。 教师让生3操作给大家看。 生3:把正方形先横着对折一次,再竖着对折~次。原来四个角就全部重在一起了,所以只要比一次就行了。 在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。 教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。这种教学方法的基本原则是什么?

问答题课堂实录:长方形和正方形的特征 张老师:“正方形的四个角都是直角”,你是如何验证的? 生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。 张老师:都是这样比的吗? 学生显然没有完全明白老师的意思,异口同声地回答:是的。 教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢? 生2:只要比两次就行了。 张老师:怎么比? 生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。 生3:我只要比一次就行了。 教师让生3操作给大家看。 生3:把正方形先横着对折一次,再竖着对折~次。原来四个角就全部重在一起了,所以只要比一次就行了。 在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。 教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。张老师在教学中使用了什么教学方法?

问答题课堂实录:长方形和正方形的特征。  张老师:你是如何验证正方形的四个角都是直角的?  学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。  张老师:都是这样比的吗?  学生显然没有完全明白老师的意思,异口同声地回答:是的。  教师注意到只有两个学生(生2、生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?  学生2:只要比两次就行了。  张老师:怎么比?  学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。  学生3:我只要比一次就行了。  教师让生3操作给大家看。  学生3:把正方形先横着对折一次,再竖着对折一次。  原来的四个角就全部重在一起了,所以只要比一次就行了。在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。  问题:(1)张老师在教学中使用了什么教学方法?     (2)这种教学方法的基本原则是什么?

单选题知道了“长方形的四个顶角都是直角”,而正方形是长方形的一个特例.那就很容易理解“正方形的四个顶角都是直角”。这种同化模式属于()A上位学习B下位学习C组合学习D推理学习

单选题知道了“长方形的四个顶角都是直角”,而正方形是长方形一个特例,那就很容易理解“正方形的四个顶角都是直角”。这种同化模式属于( )。A上位学习B下位学习C组合学习D推理学习

单选题知道了“长方形的四个顶角都是直角”,而正方形只是长方形的一个特例,那很容易理解“正方形的四个顶角都是直角”。这种同化模式属于()A上位学习B下位学习C组合学习D推理学习

问答题课堂实录:长方形和正方形的特征。张老师:你是如何验证正方形的四个角都是直角的?学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。张老师:都是这样比的吗?学生显然没有完全明白老师的意思,异口同声地回答:是的。教师注意到只有两个学生(生2和生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?学生2:只要比两次就行了。张老师:怎么比?学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。学生3:我只要比一次就行了。教师让学生3操作给大家看。学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重合在一起了,所以只要比一次就行了。在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。张老师在教学中使用了什么教学方法?

问答题课堂实录:长方形和正方形的特征。张老师:你是如何验证正方形的四个角都是直角的?学生1:我是这样比的(边说边演示,用三角板上的直角与正方形的四个角一一比较)。张老师:都是这样比的吗?学生显然没有完全明白老师的意思,异口同声地回答:是的。教师注意到只有两个学生(生2和生3)没有随声附和。就追问了一句:绝大部分同学认为要比四次,你们认为呢?学生2:只要比两次就行了。张老师:怎么比?学生2:(边演示边讲解)先把正方形对折,然后再用三角板上的直角与正方形的两个角比较。学生3:我只要比一次就行了。教师让学生3操作给大家看。学生3:把正方形先横着对折一次,再竖着对折一次。原来的四个角就全部重合在一起了,所以只要比一次就行了。在随后动手验证“正方形每条边都相等”时,学生很自然地就想到分别沿正方形的两条对角线对折,把四条边折到一起去,看是不是完全重合。教师通过提问引导启发学生思考,采用多种方法提升学生思维能力。这种教学方法的基本原则是什么?

问答题师:(呈现一个长方形和一个正方形)这两个图形分别是什么?  生:左边的是长方形,右边的是正方形。  师:今天我们继续学习长方形与正方形。  师:(边比划边说)通过折一折量一量,你能发现长方形与正方形的边有什么特点,用直角三角板的直角量一量长方形与正方形的四个角.你能发现什么?  (学生以四人小组为单位根据教师提供的材料与指定的方法探索)  生1:我们组发现了长方形对边相等,四个角都是直角。  师:通过什么方法发现的?  生1(边比划边说):用尺子量、用折纸的方法发现了长方形的对边相等、正方形的四条边相等,用直角三角板的直角量长方形和正方形的角,发现四个角都是直角。  师:还有不同的吗?  生2:我们组是用绳子量的方法发现长方形的对边相等、正方形四条边相等的。  问题:从问题的品质的角度分析什么样的问题是好问题?

单选题一个四边形,有两组对边平行,四个角都是直角,这个图形不可能是()。A平行四边形B长方形C正方形

问答题材料: 一位数学教师在教长方形的面积这节课时,先跟学生讲这节课要教的是长方形的面积,接着将若干正方形分给学生,让学生拼出长方形,并要求学生可以参考课本公式求出长方形的面积,然后请学生起来回答,并让学生说出这样求的原因。教师对学生的回答给予肯定,并进行小结,板书得出长方形的面积公式S=ab,引导学生阅读课本。 问题: 请分析该教师在教学中运用了哪些教学原则和教学方法。