问答题设f(x)=sinxcosxcos2xcos4xcos8x,求f(n)(0)。
问答题
设f(x)=sinxcosxcos2xcos4xcos8x,求f(n)(0)。
参考解析
解析:
暂无解析
相关考题:
以下程序通过函数sunFun求。这里f(x)=x2+1main( ){ printf("The sum=%d\n",SunFun(10)); }SunFun(int n){ int x,s=0;for(x=0;x<=n;x++) s+=F(【 】);return s;}F( int x){ return 【 】);}
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0D. f'(x)<0, f''(x)<0
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。A. f'(x)>0,f''(x)>0 B. f(x) 0C. f'(x)>0,f''(x)
已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。
设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()A、(1+x)/(1-x)+cB、(1-x)/(1+x)+cC、1n|(1+x)/(1-x)|+cD、1n|(1-x)/(1+x)|+c
设字长n=8位,[X]补码=(A4)16,[Y]补码=(9B))16,,则求[X+Y]补码时得到的结果和溢出标志OF分别为()。A、(13F)16和OF=0B、(3F)16和OF=0C、(13F)16和OF=1D、(3F)16和OF=1
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
单选题设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则( )。A当n为偶数时,x=0是f(x)的极大值点B当n为偶数时,x=0是f(x)的极小值点C当n为奇数时,x=0是f(x)的极大值点D当n为奇数时,x=0是f(x)的极小值点
单选题设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内( )。Af′(x)>0,f″(x)>0Bf′(x)>0,f″(x)<0Cf′(x)<0,f″(x)>0Df′(x)<0,f″(x)<0
单选题设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()A(1+x)/(1-x)+cB(1-x)/(1+x)+cC1n|(1+x)/(1-x)|+cD1n|(1-x)/(1+x)|+c
单选题设f(x)具有任意阶导数,且f′(x)=[f(x)]2,则f(n)(x)=( )。An[f(x)]n+1Bn![f(x)]n+1C(n+1)[f(x)]n+1D(n+1)![f(x)]n+1
问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
单选题设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则( )。AP{X≤0}=P{X≥0}=0.5Bf(-x)=1-f(x)CF(x)=-F(-x)DP{X≥2}=P{X<2}=0.5
问答题设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。