填空题线性规划问题中,如果在约束条件中没有单位矩阵作为初始可行基,我们通常用增加()的方法来产生初始可行基。

填空题
线性规划问题中,如果在约束条件中没有单位矩阵作为初始可行基,我们通常用增加()的方法来产生初始可行基。

参考解析

解析: 暂无解析

相关考题:

解是线性规划的基本解但不满足约束条件,则该问题一定不会()。A、无解B、无可行基解C、存在至少一个解D、无最优可行基解

求解线性规划模型时,引入人工变量是为了( ) A 使该模型存在可行解B 确定一个初始的基可行解C 使该模型标准化D 以上均不正确

求解线性规划模型时,引入人工变量是为了( )A.使该模型存在可行解B.确定一个初始的基可行解C.使该模型标准化D.以上均不正确

当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入()构造可行基

关于线性规划模型的可行解和基解,叙述正确的是()A、可行解必是基解B、基解必是可行解C、可行解必然是非基变量均为0,基变量均非负D、非基变量均为0,得到的解都是基解

对于线性规划问题的基本可行解,若大于零的基变量数小于约束条件数,则解是退化的。

下列有关对偶单纯形法的说法正确的是()。A、在迭代过程中应先选出基变量,再选进基变量B、当迭代中得到的解满足原始可行性条件时,即得到最优解C、初始单纯形表中填列的是一个正则解D、初始解不需要满足可行性E、初始解必须是可行的

线性规划问题中,如果在约束条件中出现等式约束,我们通常用增加()的方法来产生初始可行基。

线性规划问题中,下面的叙述不正确的有()。A、可行解一定存在B、可行基解必是最优解C、最优解一定存在D、最优解若存在,在可行基解中必有最优解

下列关于可行解,基本解,基可行解的说法错误的是()A、可行解中包含基可行解B、可行解与基本解之间无交集C、线性规划问题有可行解必有基可行解D、满足非负约束条件的基本解为基可行解

线性规划问题中,如果在约束条件中没有单位矩阵作为初始可行基,我们通常用增加()的方法来产生初始可行基。

当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入()可行基。

求解线性规划模型时,引入人工变量是为了()A、使模型存在可行解B、确定一个初始的基可行解C、该模型标准化

线性规划问题的基可行解对应于可行域的()。

线性规划问题中基可行解与基解的区别在于()A、基解都不是可行解B、基可行解变量Xj≥0C、基解是凸集的边界D、基解变量Xj≤0

在求minS的线性规划问题中,则()不正确。A、最优解只能在可行基解中才有B、最优解只能在基解中才有C、基变量的检验数只能为零D、有可行解必有最优解

线性规划的退化基可行解是指()A、基可行解中存在为零的非基变量B、基可行解中存在为零的基变量C、非基变量的检验数为零D、所有基变量不等于零

X是线性规划的基本可行解则有()A、X中的基变量非零,非基变量为零B、X不一定满足约束条件C、X中的基变量非负,非基变量为零D、X是最优解

单选题线性规划问题中基可行解与基解的区别在于()A基解都不是可行解B基可行解变量Xj≥0C基解是凸集的边界D基解变量Xj≤0

多选题下列有关对偶单纯形法的说法正确的是()。A在迭代过程中应先选出基变量,再选进基变量B当迭代中得到的解满足原始可行性条件时,即得到最优解C初始单纯形表中填列的是一个正则解D初始解不需要满足可行性E初始解必须是可行的

填空题当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入()可行基。

多选题线性规划问题中,下面的叙述不正确的有()。A可行解一定存在B可行基解必是最优解C最优解一定存在D最优解若存在,在可行基解中必有最优解

单选题在求minS的线性规划问题中,则()不正确。A最优解只能在可行基解中才有B最优解只能在基解中才有C基变量的检验数只能为零D有可行解必有最优解

填空题线性规划问题中,如果在约束条件中出现等式约束,我们通常用增加()的方法来产生初始可行基。

单选题求解线性规划模型时,引入人工变量是为了()A使模型存在可行解B确定一个初始的基可行解C该模型标准化

单选题下列关于可行解,基本解,基可行解的说法错误的是()A可行解中包含基可行解B可行解与基本解之间无交集C线性规划问题有可行解必有基可行解D满足非负约束条件的基本解为基可行解

单选题线性规划的退化基可行解是指()A基可行解中存在为零的非基变量B基可行解中存在为零的基变量C非基变量的检验数为零D所有基变量不等于零