单选题第一次数学危机的解决,在于()。A证明无理数系的稠密性B证明实数系的稠密性C数系定义D数系扩张
单选题
第一次数学危机的解决,在于()。
A
证明无理数系的稠密性
B
证明实数系的稠密性
C
数系定义
D
数系扩张
参考解析
解析:
暂无解析
相关考题:
第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自()的发现起,到公元前370年左右,以()的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派。
第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指()A、无穷小量究竟是不是零B、无穷小量是零C、无穷大量究竟是不是有限D、无穷大量究竟是很大的数
关于经济危机,下列正确的是()。A、凯恩斯认为原因在于需求不足B、哈耶克认为原因在于资本供给不足C、凯恩斯认为解决办法是采用膨胀性的财政货币政策D、哈耶克认为解决办法是采用紧缩性的货币政策E、哈耶克认为在危机阶段也要无为而治
单选题第二次数学危机,指发生在十七、十八世纪,围绕微积分诞生初期的基础定义展开的一场争论,这场危机最终完善了微积分的定义和与实数相关的理论系统,同时基本解决了第一次数学危机的关于无穷计算的连续性的问题,并且将微积分的应用推向了所有与数学相关的学科中。而这场争论是指()A无穷小量究竟是不是零B无穷小量是零C无穷大量究竟是不是有限D无穷大量究竟是很大的数