贪心法用于求解某目标函数在一定约束条件的最优解。它是从一个可行解(满足约束条件,但未必能使目标函数最优)出发,逐步改进解,以求得最优解的思想方法。但使用贪心法未必一定能够找到最优解。
贪心法用于求解某目标函数在一定约束条件的最优解。它是从一个可行解(满足约束条件,但未必能使目标函数最优)出发,逐步改进解,以求得最优解的思想方法。但使用贪心法未必一定能够找到最优解。
相关考题:
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
在灵敏度分析中,改变某一变量在目标函数中的系数______。 A、一定会改变当前最优解的可行性B、一定会改变当前最优解的最优性C、可能会改变当前最优解的可行性D、可能会改变当前最优解的最优性
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到
线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到
下列关于线性规划叙述正确的是()。A、线性规划问题,若有最优解,则必是一个基变量组的可行基解B、线性规划问题一定有可行基解C、线性规划问题的最优解只能在最低点上达到D、单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次
关于线性规划和其对偶规划的叙述中,正确的是()A、极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B、极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C、若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D、若对偶问题可行,则其目标函数无界的充要条件是原始问题可行
判断题贪心法用于求解某目标函数在一定约束条件的最优解。它是从一个可行解(满足约束条件,但未必能使目标函数最优)出发,逐步改进解,以求得最优解的思想方法。但使用贪心法未必一定能够找到最优解。A对B错
单选题下列关于线性规划叙述正确的是()。A线性规划问题,若有最优解,则必是一个基变量组的可行基解B线性规划问题一定有可行基解C线性规划问题的最优解只能在最低点上达到D单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次
单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A基B基本解C基可行解D可行域