判断题m阶B-树具有K个子树的非叶子结点含有K—1个关键字。A对B错
判断题
m阶B-树具有K个子树的非叶子结点含有K—1个关键字。
A
对
B
错
参考解析
解析:
暂无解析
相关考题:
下面关于B-树的叙述中正确的是( )。 A.m阶的B-树中各个非叶结点中所含关键字的数量不少于m/2﹣1个 B.m阶的B-树中各个非叶结点子树的数量不多于m﹣1个 C.B-树中各个非叶结点中所含关键字的数量与该结点子树的数量相同D.B-树中任一结点的各个子树深度相等
某树共有n个结点,其中所有分支结点的度为k(即每个非叶子结点的子树数目),则该树中叶子结点的个数为() A、(n(k+1)-1)/kB、(n(k+1)+1)/kC、(n(k-1)+1)/kD、(n(k-1)-1)/k
阅读下列说明、图和C代码。[说明5-1]B树是一种多叉平衡查找树。一棵m阶的B树,或为空树,或为满足下列特性的m叉树:①树中每个结点最多有m棵子树;②若根结点不是叶子结点,则它至少有两棵子树;⑧除根之外的所有非叶子结点至少有[m/2]棵子树;④所有的非叶子结点中包含下列数据信息:(n,A0,K1,A1,K2,A2, …,Kn,An)其中:Ki(i=1,2,…,n)为关键字,且Ki<Ki+1(i=1,2,…,n-1);Ai(i=0,1,…,n)为指向子树根结点的指针,且指针Ai-1,所指子树中所有结点的关键字均小于Ki,Ai+1,所指子树中所有结点的关键字均大于Ki,n为结点中关键字的数目。⑤所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)。例如,一棵4阶B树如下图所示(结点中关键字的数目省略)。B树的阶M、bool类型、关键字类型及B树结点的定义如下:define M 4 /*B树的阶*/typedef enum {FALSE=0,TRUE=1}bool;typedef int ElemKeyType;typedef struct BTreeNode {int numkeys; /*结点中关键字的数日*/struct BTreeNode*parent; /*指向父结点的指针,树根的父结点指针为空*/struct BTreeNode *A[M]; /*指向子树结点的指针数组*/ElemKeyType K[M]; /*存储关键字的数组,K[0]闲置不用*/}BTreeNode;函数SearchBtree(BTreeNode*root,ElemKcyTypeakey,BTreeNode:*pb)的功能是:在给定的一棵M阶B树中查找关键字akey所在结点,若找到则返回TRUE,否则返回 FALSE。其中,root是指向该M阶B树根结点的指针,参数ptr返回akey所在结点的指针,若akey不在该B树中,则ptr返回查找失败时空指针所在结点的指针。例如,在上图所示的4阶B树中查找关键字25时,ptr返回指向结点e的指针。注;在结点中查找关键字akey时采用二分法。[函数5-1]bool SearchBtree(BTreeNode* root, ElemKeyType akey, BTreeNode **ptr){int lw, hi, mid;BTreeNode*p = root;*ptr = NULL;while ( p ) {1w = 1; hi=(1);while (1w <= hi) {mid = (1w + hi)/2;if (p -> K[mid] == akey) {*ptr = p;return TRUE;}elseif ((2))hi=mid - 1;else1w = mid + 1;}*ptr = p;p = (3);}return FALSE;}[说明5-2]在M阶B树中插入一个关键字时,首先在最接近外部结点的某个非叶子结点中增加一个关键字,若该结点中关键字的个数不超过M-1,则完成插入;否则,要进行结点的“分裂”处理。所谓“分裂”,就是把结点中处于中间位置上的关键字取出来并插入其父结点中,然后以该关键字为分界线,把原结点分成两个结点。“分裂”过程可能会一直持续到树根,若树根结点也需要分裂,则整棵树的高度增加1。例如,在上图所示的B树中插入关键字25时,需将其插入结点e中。由于e中已经有3个关键字,因此将关键字24插入结点e的父结点b,并以24为分界线将结点e分裂为e1和e2两个结点,结果如下图所示。函数Isgrowing(BTreeNode*root,ElemKeyTypeakey)的功能是:判断在给定的M阶B树中插入关键字akey后,该B树的高度是否增加,若增加则返回TRUE,否则返回FALSE。其中,root是指向该M阶B树根结点的指针。在函数Isgrwing中,首先调用函数SearchBtree(即函数5-1)查找关键字akey是否在给定的M阶B树中,若在,则返回FALSE(表明无需插入关键字akey,树的高度不会增加);否则,通过判断结点中关键字的数目考查插入关键字akey后该B树的高度是否增加。[函数5-2]bool Isgrowing(BTreeNode* root, ElernKeyType akey){ BTreeNode *t, *f;if( !SearchBtree((4) )
下面关于m阶B-树说法正确的是()。①每个结点至少有两棵非空子树;②树中每个结点至多有m-l个关键字;③所有叶子在同一层上;④当插入一个数据项引起B树结点分裂后,树长高一层。A.①②③B.②③C.②③④D.③
下列叙述正确的个数是()。(1)向二叉排序树中插入一个结点,所需比较的次数可能大于此二叉排序树的高度。(2)对B-树中任一非叶子结点中的某关键字K,比K小的最大关键字和比K大的最小关键字一定都在叶子结点中。(3)所谓平衡二叉树是指左、右子树的高度差的绝对值不大于1的二叉树。(4)删除二叉排序树中的一个结点,再重新插入,一定能得到原来的二又排序树。A.4B.3C.2D.1
某树共有n个结点,其中所有分支结点的度为k(即每个非叶子结点的子树数目),则该树中叶子结点的个数为()A.(n(k+1)-1)/k B.(n(k+1)+1)/k? C.(n(k-1)+1)/k D.(n(k-1)-1)/k?
二叉树的前序、中序和后序遍历法最适合采用__(1)__来实现。查找树中,由根结点到所有其他结点的路径长度的总和称为__(2)__,而使上述路径长度总和达到最小的树称为__(3)__。它一定是__(4)__。在关于树的几个叙述中,只有__(5)__是正确的。空白(5)处应选择()A、用指针方式存储有n个结点的二叉树,至少要有n+1个指针B、m阶B-树中,每个非叶子结点的后继个数≥C、m阶B-树中,具有k个后继的结点,必含有k-1个键值D、平衡树一定是丰满树
在关于树的几个叙述中,()是正确的。A、用指针方式存储有n个结点二叉树,至少要有n+1个指针B、m阶B-树中,每个非椰子结点的后件个数≥[m/2C、m阶B-树中,具有k个后件的结点,必含有k-1个键值D、平衡树一定是丰满树
下面关于m阶B树说法正确的是() ①每个结点至少有两棵非空子树; ②树中每个结点至多有m一1个关键字; ③所有叶子在同一层上; ④当插入一个数据项引起B树结点分裂后,树长高一层。A、①②③B、②③C、②③④D、③
单选题下面关于m阶B树说法正确的是() ①每个结点至少有两棵非空子树; ②树中每个结点至多有m一1个关键字; ③所有叶子在同一层上; ④当插入一个数据项引起B树结点分裂后,树长高一层。A①②③B②③C②③④D③
单选题二叉树的前序、中序和后序遍历法最适合采用__(1)__来实现。查找树中,由根结点到所有其他结点的路径长度的总和称为__(2)__,而使上述路径长度总和达到最小的树称为__(3)__。它一定是__(4)__。在关于树的几个叙述中,只有__(5)__是正确的。空白(5)处应选择()A用指针方式存储有n个结点的二叉树,至少要有n+1个指针Bm阶B-树中,每个非叶子结点的后继个数≥Cm阶B-树中,具有k个后继的结点,必含有k-1个键值D平衡树一定是丰满树
判断题对于一棵m阶的B-树.树中每个结点至多有m 个关键字。除根之外的所有非终端结点至少有┌m/2┐个关键字。A对B错