某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资4000元,K短期内固定为10万台时,每万台时的费用2000元。可判断()为该企业正确的短期成本函数。A、STC=20000+50Q2B、STC=20000+100Q2C、SAC=50Q+20000/QD、SMC=200Q
某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资4000元,K短期内固定为10万台时,每万台时的费用2000元。可判断()为该企业正确的短期成本函数。
- A、STC=20000+50Q2
- B、STC=20000+100Q2
- C、SAC=50Q+20000/Q
- D、SMC=200Q
相关考题:
已知某企业的生产函数Q=L2/3K1/3 ,劳动的价格W=2,资本的价格r=1,求:(1)当成本C=3000时,企业实现最大产量时的L、K和Q的值。(2)当产量Q=800时,企业实现最少成本时的L、K和C的值。
已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产,且K=10,求:(1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。(2)分别计算当总产量TPL、劳动平均产量APL和劳动边际产量MPL各自达到极大值时的厂商劳动的投入量。(3)什么时候APL=MPL?它的值又是多少?
假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?
已知生产函数为Q =f(K,L)=KL -0. 5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,若K =10,求: (1)写出劳动的平均产量和边际产量函数。 (2)计算当总产量达到极大值时企业雇佣的劳动人数。
已知生产函数Q=f(L,K)=2KL-0.5L2-0.5K2,假定厂商目前处于短期生产切K的平均数为10 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、关于劳动的平均产量APL函数和关于劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到最大值时的厂商的劳动投入量。 (3)什么时候APL= MPL?它的值又是多少?
假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。
假定一个竞争性厂商,其生产函数为Q=f(L,K)=AL^αK^β,生产要素L和K的价格分别为w和r。 (1)试求在K为不变投入时厂商的短期成本函数。 (2)求厂商的长期成本函数,并讨论不同的规模报酬对平均成本曲线形状的影响。
已知某企业的生产函数为Q=,L^(2/3)K^(1/3),劳动的价格,w=2,资本的价格r =1:求 (1)当成本C=3000时,企业实现最大产量时的L、K和Q的均衡值。 (2)当产量Q=800时,企业实现最小成本时的L、K和C的均衡值:
某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资8000元,K每万台时的费用2000元。可判断()为该企业正确的长期成本函数。A、LTC=4000QB、LTC=2000QC、LAC=4000(元)D、LMC=2000(元)
已知生产函数Q=f(L,K)=4KL-L2-0.25K2,假定厂商目前处于短期生产,且K=20。 (1)写出在短期生产中该厂商关于劳动的总产量TPL函数、劳动的平均产量APL函数和劳动的边际产量MPL函数。 (2)分别计算当劳动的总产量TPL、劳动的平均产量APL和劳动的边际产量MPL各自达到极大值时的厂商的劳动投入量。 (3)什么时候APL=MPL?它的值又是多少?
问答题假定某公司甲的生产函数为:Q=10K0.5L0.5;另一家公司乙的生产函数为:Q=10K0.6L0.4。其中Q为产量,K和L分别为资本和劳动的投入量。 (1)如果两家公司使用同样多的资本和劳动,哪一家公司的产量大? (2)如果资本的投入限于9单位,而劳动的投入没有限制,哪家公司劳动的边际产量更大?
问答题已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求: (1)劳动的投入函数L=L(Q); (2)总成本函数、平均成本函数和边际成本函数; (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?
多选题某企业的生产函数为Q=2(KL)1/2。其中,Q、K、L分别为每月的产量(万件)、资本投入量(万台时)、投入的人工数(万工时)。假定L每万工时的工资4000元,K短期内固定为10万台时,每万台时的费用2000元。可判断()为该企业正确的短期成本函数。ASTC=20000+50Q2BSTC=20000+100Q2CSAC=50Q+20000/QDSMC=200Q
问答题已知企业的生产函数为Q=F(L,K)=LK-0.5L2-0.32K2,Q表示产量,K表示资本,L表示劳动,令K=10。试求劳动的平均产量函数(AP1)和边际产量函数(MP1)。