设总体X~N(μ,σ2),X1,X2,X3,X4是正态总体X的一个样本,为样本均值,S2为样本方差,若μ为未知参数且σ为已知参数,下列随机变量中属于统计量的有( )。A.X1-X2+X3B.2X3-μC.D.E.
设X1,X2为来自总体X~N(μ,б2)的样本,若为μ的一个无偏估计,则C=()。
设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,与s分别为其观测值的样本均值与样本标准差,则在下列抽样分布中正确表述的有( )。
设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,则有( )。
设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().
设(X1,X2,…,Xn)是抽自正态总体N(u,σ2)的一个容量为10的样本,
设X1,X2,…,Xn是来自总体X的样本,,s2分别是样本均值和样本方差,E(X)=μ,D(X)=σ2,则有( )。
设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().
设(X1,X2,…,X10)是抽自正态总体N()的一个容量为10的样本,其中-∞<μ<+∞,>0。记
设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ).A.B.C.X1+XnD.
设总体X的概率密度为未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:
设总体X~N(u,σ2),u与σ2均未知,x1,x2,...,x9为其样本或样本值,检验假设H0:
设正态总体X的方差为1,根据来自总体X的容量为100的简单随机样本测得样本的均值为5,则总体X的数学期望的置信度近似等于0.95的置信区间为_______.
设X1,X2,…,X7是总体X~N(0,4)的简单随机样本,求P
设总体X~N(0,σ^2),X1,X2,…,X20是总体X的简单样本,求统计量U=所服从的分布.
设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率
设总体X的概率密度为为总体X的简单随机样本,其样本方差为S^2,则E(S^2)_______.
设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?
设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设总体X的概率分布为 其中θ(0)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值,
设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2=,则E(S^2)=_______.
设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).
设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.
设总体X的均值μ及方差σ2都存在,且有σ2>0,但μ,σ2均未知,又设X1,X2,…,Xn是来自总体x的样本,是μ,σ2的矩估计量,则有( )。
设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:
设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()
问答题设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.