若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。

若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。


相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

若f(x)为(-∞,+∞)上的任意函数,则F(x)=f(x)-f(-x)是() A、偶函数B、奇函数C、非奇非偶函数D、F(x)≡0

上题中,若求P{X=a},则()A、F(a)B、F(a-0)C、F(a)-F(a-0)D、1-F(a)

已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=()。A.0B.-1C.-2D.-3

数学运算已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=( )。A.0B.-1C.-2D.3

(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(A)若f(x) 是偶函数,则f(-x)是偶函数(B)若f(x)不是奇函数,则f(-x)不是奇函数(C)若f(-x)是奇函数,则f(x)是奇函数(D)若f(-x)不是奇函数,则f(x)不是奇函数

设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:

下列命题正确的是(). A若|f(x)|在x=a处连续,则f(x)在x=a处连续 B若f(x)在x=a处连续,则|f(x)|在x=a处连续 C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续 D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续

若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0B.f′(x)<0,f″(x)>0C.f′(x)>0,f″(x)<0D.f′(x)>0,f″(x)>0

若f'(x)<0(a<x≤b)且f(b)>0,则在(a,b)内必有()A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符号不定

下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0D.若函数f(x)在点x0处连续,则f'(x0)一定存在

若函数f(x)满足方程f"(x)+f'(x)-2f(x)=0及f"(x)+f(x)=2e……x,则f(x)=________.

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

若函数f(-x)=-f(x) (-∞0,f(x)A. f(x)>0, f(x)0C. f(x)>0, f(x)>0 D.f(x)

设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0B.若f'(xo)=0,则点xo必为f(x)的极值点C.若f'(xo)≠0,则点xo必定不为f(x)的极值点D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0

若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )A.f′(x)<f″(x)<0B.f′(x)<f″(x)>0C.f′(x)>f″(x)<0D.f′(x)>f″(x)>0

命题“若f(x)为奇函数,则f(-x)为奇函数”的否命题( )。A.若f(x)为偶函数,则f(-x)为偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)为奇函数,则fD.若f(-x)为奇函数,则f(x)不是奇函数

若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()A、deg(f(x)g(x))B、deg(f(x)g(x))>max{degf(x),degg(x)}C、deg(f(x)+g(x))>max{degf(x),degg(x)}D、deg(f(x)+g(x))=max{degf(x),degg(x)}

F[x]中,若f(x)+g(x)=3,则f(0)+g(0)=()。A、0.0B、1.0C、2.0D、3.0

判断题若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。A对B错

单选题F[x]中,若f(x)+g(x)=3,则f(0)+g(0)=()。A0.0B1.0C2.0D3.0

单选题若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内(  )。Af′(x)<0,f″(x)<0Bf′(x)<0,f″(x)>0Cf′(x)>0,f″(x)<0Df′(x)>0,f″(x)>0

单选题下列说法中正确的是(  )。[2014年真题]A若f′(x0)=0,则f(x0)必须是f(x)的极值B若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]Af′(x)>0,f″(x)<0Bf′(x)<0,f″(x)>0Cf′(x)>0,f″(x)>0Df′(x)<0,f″(x)<0

单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()Af′(x)0,f″(x)0Bf′(x)0,f″(x)0Cf′(x)0,f″(x)0Df′(x)0,f″(x)0