在铁路就要修完时,无情的()和()最终夺去了保尔的战斗力。
在铁路就要修完时,无情的()和()最终夺去了保尔的战斗力。
相关考题:
在复习一般应用题时,教师出示一道题:某修路队修一天公路,计划每天修60天,7天修完。若需提前1天修完,平均每天比计划多修几米? 甲解:60×7÷(7-1)-60=420÷6-60=70-60=10(米) 乙解:60÷(7-1)=60÷6=10(米),她说:这条公路计划7天修完,若提前1天修完,只能用6天。在6天里平均每天比计划多修的米数加起来等于计划1天修的米数加起来等于计划1天修的米数,所以只要把60除以6即可。大家对乙另辟蹊径的最简解法十分赞赏,但是又说不清为什么要这样解。这时,丙提出质疑,他说:用乙的算法,若需提前6天只能修完,60÷(7-6)=60米,60+60=120(米),即1天只能修120米,而公路全程有420米,是不可能提前6天修完的。教师表扬丙敢于质疑,并启发说:我们画个图,结合图形来研究好吗?于是师生共同作图如下:在(1)中,提前1天用6天修完,只要1天的工作量分成6份,平均分配到6天的工作时间中去,就是说若要提前1天修完,每天就要比原来多修“60÷6=10”米。乙的解法实际上是60×7÷(7-1),这里把“×1”省略了是可以的。 在(2)中,提前6天用1天修完,那么就要把6天的工作量60×6=360(米)都加到1天的工作量中去,即60×6+60=420(米)。 最后,引导学生反思和评价这一段学习过程,有这样几点看法:(1)两种解法都是正确的,甲是一般解法,乙的解法更为简便。(2)同学们在解题过程中有说不清楚,或者有怀疑的地方要敢于提问,提得出问题是进步的开始。(3)根据题意作出草图,可以帮助我们理清思路。
问答题保尔最终去了哪里?