问答题多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
问答题
多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
参考解析
解析:
暂无解析
相关考题:
以下关于统计分析的说法,错误的是( )。A.回归模型的设定必须满足一定的假定条件B.在回归模型满足经典假设时,用最小二乘法得到的结果是无偏且有效的C.应该用回归模型,可以进行预测D.如果所得到的回归模型存在多重共线性等问题时,不可以用该模型进行预测。
根据以下内容,回答2~3题。在实际应用当中,线性回归模型有时不完全满足那些基本假定。会遇到的较多问题主 要有多重共线性问题以及自相关、异方差等问题。以下说法正确的是( )。A.当回归模型中两个或者两个以上的自变量彼此相关时,则称回归模型中存在多重共线性B.当模型中的误差项存在相关性的时候,称回归模型中存在多重共线性C.同方差性假定的意义是指每个样本残差μi的方差,不随样本的变化而变化D.当回归模型中两个或者两个以上的自变量彼此相关时,则称回归模型中存在自相关
以下关于统计分析的说法,错误的是()A、回归模型的设定必须满足一定的假定条件B、在回归模型满足经典假设时,用最小二乘法得到的结果是无偏且有效的C、应该用回归模型,可以进行预测D、如果所得到的回归模型存在多重共线性等问题时,不可以用该模型进行预测。
填空题对不满足方差分析基本假定的资料可以作适当尺度的转换后再分析,常用方法有()等。