下列关于最小生成树的叙述中,正确的是() 最小生成树的代价唯一 所有权值最小的边一定会出现在所有的最小生成树中 使用普里姆算法从不同顶点开始得到的最小生成树一定相同 使用普里姆算法和克鲁斯卡尔算法得到的最小生成树总不相同A.仅IB.仅IIC.仅I 、IID.IV
下列关于最小生成树的叙述中,正确的是() 最小生成树的代价唯一 所有权值最小的边一定会出现在所有的最小生成树中 使用普里姆算法从不同顶点开始得到的最小生成树一定相同 使用普里姆算法和克鲁斯卡尔算法得到的最小生成树总不相同
A.仅I
B.仅II
C.仅I 、II
D.IV
参考答案和解析
A 若有较小的相等权值,最小生成树可能不唯一,但是其代价是唯一的。Ⅱ的错误在于“所有权值最小的边一定会出现在……”,这可能形成环。Ⅲ的错误在于“……最小生成树一定相同”,Ⅳ的错误在于两种算法“……最小生成树总不相同”。若无相同权值,生成树一定相同;若有较小相等权值,生成树可能会不同。
相关考题:
下面哪些使用的不是贪心算法()A.单源最短路径中的Dijkstra算法B.最小生成树的Prim算法C.最小生成树的Kruskal算法D.计算每对顶点最短路径的Floyd-Warshall算法
对于含n个顶点、e条边的无向连通图,利用Prim算法构造最小生成树的时间复杂度(),用Kruskal算法构造最小生成树的时间复杂度为()。 A.O(n)B.O(n²)C.O(e)D.O(eloge)F.O(e²)
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一 个顶点开始,每次从剩余的顶点加入一个顶点,该顶点与当前生成树中的顶占的连边权重 最小,直到得到最小生成树开始,Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点之间的边中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了( )设计策略,且( )。A.分治 B.贪心 C.动态规划 D.回溯 A.若网较稠密,则Prim算法更好 B.两个算法得到的最小生成树是一样的 C.Prim算法比Kruscal算法效率更高 D.Kruscal算法比Prim算法效率更高
已知一个图的顶点集V和边集E分别为:V={1,2,3,4,5,6,7};E={(1,2)3,(1,3)5,(1,4)8,(2,5)10,(2,3)6,(3,4)15,(3,5)12,(3,6)9,(4,6)4,(4,7)20,(5,6)18,(6,7)25};按照普里姆算法从顶点1出发得到最小生成树,试写出在最小生成树中依次得到的各条边。
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了 (请作答此空) 设计策略,且 ( ) 。A.分治B.贪心C.动态规划D.回溯
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了 ( ) 设计策略,且 (请作答此空) 。 A. 若网较稠密,则Prim算法更好B. 两个算法得到的最小生成树是一样的C. Prim算法比Kruscal算法效率更高D. Kruscal算法比Prim算法效率更高
Prim算法和Kruscal算法都是无向连通网的最小生成树的算法,Prim算法从一个顶点开始,每次从剩余的顶点中加入一个顶点,该顶点与当前的生成树中的顶点的连边权重最小,直到得到一颗最小生成树;Kruscal算法从权重最小的边开始,每次从不在当前的生成树顶点中选择权重最小的边加入,直到得到一颗最小生成树,这两个算法都采用了(64)设计策略,且(65)。A.分治B.贪心C.动态规划D.回溯
填空题对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal算法求最小生成树的时间复杂度为()。