若开环系统是不稳定的,即位于s平面的右半部的开环极点数p=1时,则闭环系统稳定的充要条件是奈奎斯特曲线顺时针绕(-1,j0)点1圈,即:N = -1。
若开环系统是不稳定的,即位于s平面的右半部的开环极点数p=1时,则闭环系统稳定的充要条件是奈奎斯特曲线顺时针绕(-1,j0)点1圈,即:N = -1。
参考答案和解析
正确
相关考题:
关于劳斯判据和奈奎斯特判据,一下叙述中正确的是()。 A、劳斯判据属代数判据,是用来判断开环系统稳定性的B、奈奎斯特判据属几何判据,是用来判断闭环系统稳定性的C、奈奎斯特判据是用来判断开环系统稳定性的D、以上叙述均不正确
若闭环系统的特征式与开环传递函数的关系为F(s)=1+G(s)H(s),则()。 A、F(s)的零点就是系统闭环零点B、F(s)的零点就是系统开环极点C、F(s)的极点就是系统开环极点D、F(s)的极点就是系统闭环极点
奈魁斯特围线中所包围系统开环传递函数G(s)的极点数为3个,系统闭环传递函数的极点数为2个,则映射到G(s)复平面上的奈魁斯特曲线将() A、逆时针围绕点(0,j0)1圈B、顺时针围绕点(0,j0)1圈C、逆时针围绕点(-1,j0)1圈D、顺时针围绕点(-1,j0)1圈
当ω从0到+∞变化时,开环传递函数的Nyquist轨迹逆时针包围点(-1,j0)的圈数N与其的右极点数P具有什么关系时,则闭环系统稳定。 A、N=-P/2B、N=P/2C、N=-PD、N=P
当ω从0到+∞变化时,开环传递函数的Nyquist轨迹逆时针包围点()的圈数N与其的右极点数P具有N=P/2关系时,则闭环系统稳定。() A.(0,j1)B.(0,-j1)C.(-1,j0)D.(1,j0)
利用奶奎斯特稳定性判据判断系统的稳定性时,Z=P-N中的Z表示意义为()。A、开环传递函数零点在S左半平面的个数B、开环传递函数零点在S右半平面的个数C、闭环传递函数零点在S右半平面的个数D、闭环特征方程的根在S右半平面的个数
将下列判断中正确者的编号填入题后括号()。A、如果系统开环稳定,则闭环一定稳定B、如果系统闭环稳定,则开环一定稳定C、如果系统开环稳定,则闭环稳定的条件是闭环奈氏曲线不包围(-1,j0)点D、如果系统开环稳定,则闭环稳定的条件是开环奈氏曲线不包围(-1,j0)点
作为系统稳定或不稳定程度的度量,幅值欲度和相位欲度表明了()A、闭环乃氏曲线和(-1,j0)点的距离B、开环乃氏曲线和(-1,j0)点的距离C、ω→0时,闭环相角增益的大小D、ω→∞时,闭环相角增益的大小
如果已知一系统G(s),p是开环极点在s右半平面的个数,当 从-∞变化到∞时,下列关于该系统奈奎斯特(Nyquist)曲线描述正确的是:()A、奈奎斯特曲线不包围(-1,j0)点,且p=0,则闭环系统稳定。B、奈奎斯特曲线按逆时针方向包围(-1,j0)点p周,则闭环系统稳定。C、奈奎斯特曲线按顺时针方向包围(-1,j0)点p周,则闭环系统稳定。D、奈奎斯特曲线按顺时针方向包围(-1,j0)点p周,无论p为何值,闭环系统不稳定。
单选题利用奶奎斯特稳定性判据判断系统的稳定性时,Z=P-N中的Z表示意义为()。A开环传递函数零点在S左半平面的个数B开环传递函数零点在S右半平面的个数C闭环传递函数零点在S右半平面的个数D闭环特征方程的根在S右半平面的个数