填空题单纯形法的求解步骤可以分为:确定初始可行基、最优解检验、()、基变换和旋转运算。

填空题
单纯形法的求解步骤可以分为:确定初始可行基、最优解检验、()、基变换和旋转运算。

参考解析

解析: 暂无解析

相关考题:

基可行解对应的基,称为()。A、最优基B、可行基C、最优可行基D、极值基

线性规划原问题(LP)为:对偶问题(Dp)为:现用单纯形法求解(LP)得最优解,则在最优单纯形表中,同时也可得到(DP)的最优等于()A、最优单纯形表中松弛变量的检验数;B、最优单纯形表中松弛变量的检验数的相反数C、最优单纯形表中非基变量的检验数D、最优单纯形表中非基变量的检验数的相反数

利用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。 A.正B.负C.非正D.非负

利用单纯形法求解线性规划问题时,首先需要()。 A.找初始基础可行基B.检验当前基础可行解是否为最优解C.确定改善方向D.确定入变量的最大值和出变量

用单纯形法求解线性规划时,引入人工变量的目的是什么?()A、标准化B、确定初始基本可行解C、确定基本可行D、简化计算

用单纯形法求解线性规划时,引入人工变量的目的是()。A、标准化B、确定初始基本可行解C、确定初始可行解D、简化计算

用大M法求解LP模型时,若在最终表上基变量中仍含有非零的人工变量,则原模型()A、有可行解无最优解B、有最优解C、无可行解

表上作业法的基本思想和步骤与单纯形法类似,因而初始调运方案的给出就相当于找到一个()A、基B、可行解C、初始基本可行解D、最优解

下列有关对偶单纯形法的说法正确的是()。A、在迭代过程中应先选出基变量,再选进基变量B、当迭代中得到的解满足原始可行性条件时,即得到最优解C、初始单纯形表中填列的是一个正则解D、初始解不需要满足可行性E、初始解必须是可行的

单纯形法的求解步骤可以分为:确定初始可行基、最优解检验、()、基变换和旋转运算。

单纯形法求解时,若求得的基础解满足非负要求,则该基础解为()。A、可行解B、最优解C、特解D、可行基解

用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题()。A、有惟一最优解B、有多重最优解C、无界D、无解

求解线性规划模型时,引入人工变量是为了()A、使模型存在可行解B、确定一个初始的基可行解C、该模型标准化

如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A、基B、基本解C、基可行解D、可行域

在求minS的线性规划问题中,则()不正确。A、最优解只能在可行基解中才有B、最优解只能在基解中才有C、基变量的检验数只能为零D、有可行解必有最优解

用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。A、正B、负C、非正D、非负

线性规划问题有可行解,则()A、必有基可行解B、必有唯一最优解C、无基可行解D、无唯一最优解

单选题关于求最小化值的单纯形算法,下列说法不正确的是()。A通常选取最大正检验数对应的变量作为换入变量。B通常按最小比值原则确定离基变量。C若线性规划问题的可行域有界,则该问题最多有有限个数的最优解。D单纯形法的迭代计算过程是从一基个可行解转换到目标函数更小的另一个基可行解。

多选题下列有关对偶单纯形法的说法正确的是()。A在迭代过程中应先选出基变量,再选进基变量B当迭代中得到的解满足原始可行性条件时,即得到最优解C初始单纯形表中填列的是一个正则解D初始解不需要满足可行性E初始解必须是可行的

单选题用单纯形法求解目标函数为极大值的线性规划问题,当所有非基变量的检验数均小于零时,表明该问题()A有无穷多最优解B无可行解C有且仅有一个最优解D有无界解

单选题单纯形法求解时,若求得的基础解满足非负要求,则该基础解为()。A可行解B最优解C特解D可行基解

单选题用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题()。A有惟一最优解B有多重最优解C无界D无解

单选题在求minS的线性规划问题中,则()不正确。A最优解只能在可行基解中才有B最优解只能在基解中才有C基变量的检验数只能为零D有可行解必有最优解

单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A基B基本解C基可行解D可行域

单选题表上作业法的基本思想和步骤与单纯形法类似,因而初始调运方案的给出就相当于找到一个()A基B可行解C初始基本可行解D最优解

单选题求解线性规划模型时,引入人工变量是为了()A使模型存在可行解B确定一个初始的基可行解C该模型标准化

单选题用单纯形法求解线性规划时,引入人工变量的目的是()。A标准化B确定初始基本可行解C确定初始可行解D简化计算