H矩阵的列数等于监督位的数目r
H矩阵的列数等于监督位的数目r
参考答案和解析
监督位
相关考题:
没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。 A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵
对关系R进行投影运算后,得到关系S,则()。 A.关系R的元组数等于关系S的元组数B.关系R的元组数小于关系S的元组数C.关系R的元组数大于关系S的元组数D.关系R的元组数大于或等于关系S的元组数
下列数字成像基本用语哪项不正确( )。A.矩阵表示一个横成行、纵成列的数字方阵B.采集矩阵是指每幅画面观察视野所含像素的数C.显示矩阵是指显示器上显示的图像像素数目D.体素是指组成图像矩阵中的基本单元E.像素是一个二维的概念
A是mk´矩阵, B是kt´矩阵, 若B的第j列元素全为零,则下列结论正确的是() A、AB的第j行元素全等于零B、AB的第j列元素全等于零C、BA的第j行元素全等于零D、BA的第j列元素全等于零
阅读以下说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对m行n列的稀疏矩阵M,进行转置运算后得到n行m列的矩阵MT,如图3-1所示为了压缩稀疏矩阵的存储空间,用三元组(即元素所在的行号、列号和元素值、表示稀疏矩阵中的一个非零元素,再用一维数组逐行存储稀疏矩阵中的所有非零元素也称为三元组顺序表)。例如,图3-1所示的矩阵M相应的三元组顺序表如表3-1所示。其转置矩阵MT的三元组顺序表如表3-2所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M进行转置运算。对M实施转置运算时,为了将M中的每个非零元素直接存入其转置矩阵MT三元组顺序表的相应位置,需先计算M中每一列非零元素的数目(即MT中每一行非零元素的数目),并记录在向量num中;然后根据以下关系,计算出矩阵M中每列的第一个非零元素在转置矩阵MT三元组顺序表中的位置:cpot[0]=0cpot[j]=cpot[j-1]+num[j-1]) /*j为列号*/类型ElemType,Triple和Matrix定义如下:typedef int ElemType;typedef struct{ /*三元组类型*/int r,c; /*矩阵元素的行号、列号*/ElemType e; /*矩阵元素的值*/}Triple;typedef struct{ /*矩阵的元组三元组顺序表存储结构*/int rows,cols,elements; /*矩阵的行数、列数和非零元素数目*/Triple data[MAXSIZE];}Matrix;[C语言函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /*MT是M的转置矩阵*/num=(int*)malloc(M.cols*sizeof(int));cpot=(int*)malloc(M.cols*sizeof(int));if(!num ||cpot)return ERROR;MT.rows=(1); /*设置转置矩阵MT行数、列数和非零元素数目*/MT.cols=(2);MT.elements=M.elements;if(M.elements>0){for (q=0 ; q<M. cols ; q++)num[q]=0;for (t=0; t<M.elements;++t) /*计算矩阵M中每一列非零元素数目*/num [M.data[t].c]++;/*计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3);for(j=1;j<M.cols;j++)cpot[j]=(4);/*以下代码完成转置矩阵MT三元组顺序表元素的设置*/for(t=0;t<M.elements;t++){j=(5); /*取矩阵M的一个非零元素的列号存入j*//*q为该非零元素在转置矩阵MT三元组顺序表中的位置(下标)*/q=cpot[j];MT.data[q].r=M.data[t].c;MT.data[q].c=M.data[t].r;MT.data[q].e=M.data[t].e;++cpot[j]; /*计算M中第j列的下一个非零元素的目的位置*/}/*for*/} /*if*/free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/*TransposeMatrix*/
试题三(共15分)阅读以下说明和C 函数,将应填入(n) 处的字句写在答题纸的对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对于m行n 列的稀疏矩阵M,进行转置运算后得到n 行m列的矩阵MT,如图3-1 所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M 进行转置运算。对 M 实施转置运算时,为了将M 中的每个非零元素直接存入其转置矩阵MT 三元组顺序表的相应位置,需先计算M 中每一列非零元素的数目(即MT 中每一行非零元素的数目),并记录在向量num 中;然后根据以下关系,计算出矩阵M 中每列的第一个非零元素在转置矩阵MT 三元组顺序表中的位置:cpot[0] = 0cpot[j] = cpot[j-1] + num[j-1] /* j 为列号 */类型ElemType、Triple 和Matrix 定义如下:typedef int ElemType;typedef struct { /* 三元组类型 */int r,c; /* 矩阵元素的行号、列号*/ElemType e; /* 矩阵元素的值*/}Triple;typedef struct { /* 矩阵的三元组顺序表存储结构 */int rows,cols,elements; /* 矩阵的行数、列数和非零元素数目 */Triple data[MAXSIZE];}Matrix;[C函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /* MT 是M的转置矩阵 */num = (int *)malloc(M.cols*sizeof(int));cpot = (int *)malloc(M.cols*sizeof(int));if (!num || !cpot)return ERROR;MT.rows = (1) ; /* 设置转置矩阵MT行数、列数和非零元数目*/MT.cols = (2) ;MT.elements = M.elements;if (M.elements 0) {for(q = 0; q M.cols; q++)num[q] = 0;for(t = 0; t M.elements; ++t) /* 计算矩阵M 中每一列非零元素数目*/num[M.data[t].c]++;/* 计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3) ;for(j = 1;j M.cols; j++)cpot[j] = (4) ;/* 以下代码完成转置矩阵MT三元组顺序表元素的设置 */for(t = 0; t M.elements;t++){j = (5) ; /* 取矩阵M 的一个非零元素的列号存入j *//* q 为该非零元素在转置矩阵MT 三元组顺序表中的位置(下标)*/q = cpot[j];MT.data[q].r = M.data[t].c;MT.data[q].c = M.data[t].r;MT.data[q].e = M.data[t].e;++cpot[j]; /* 计算M 中第j列的下一个非零元素的目的位置 */}/* for */}/* if */free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/* TransposeMatrix */
下列结论中正确的是( )。A、 矩阵A的行秩与列秩可以不等B、 秩为r的矩阵中,所有r阶子式均不为零C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D、 秩为r的矩阵中,不存在等于零的r-1阶子式
多组(R组)资料比较的秩和检验,其H值近似服从n=R-1的c2检验的条件是()A、R=3,最大的样本例数小于5B、要比较的组数R=3,每组样本例数等于5C、R大于3,最大的样本例数大于等于5D、R=3,最大的样本例数小于等于5E、R小于3,最小的样本例数等于5
如果视野将矩阵完全填充,且像素不是正方形,则像素的宽度等于()A、视野的宽度除以矩阵的行数B、视野的高度除以矩阵的列数C、视野的宽度除以矩阵的列数D、视野的高度除以矩阵的行数E、视野的高度乘以矩阵的行数
单选题没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。AA的秩等于nBA的秩不等于0CA的行列式值不等于0DA存在逆矩阵
单选题如果视野将矩阵完全填充,且像素不是正方形,则像素的宽度等于( )。A视野的高度除以矩阵的行数B视野的宽度除以矩阵的行数C视野的宽度除以矩阵的列数D视野的高度除以矩阵的列数E视野的高度乘以矩阵的行数
单选题对关系R进行投影运算后,得到关系S,则()A关系R的元组数等于关系S的元组数B关系R的元组数小于关系S的元组数C关系R的元组数大于或等于关系S的元组数D关系R的元组数大于关系S的元组数
单选题下列结论中正确的是( )A矩阵A的行秩与列秩可以不等B秩为r的矩阵中,所有r阶子式均不为零C若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D秩为r的矩阵中,不存在等于零的r-1阶子式