在利用单纯形法求解目标为最大的线性规划问题时,解为最优的判断依据是()A.所有变量的检验数都大于等于0B.所有变量的检验数都大于0C.所有变量的检验数都小于等于0D.所有变量的检验数都小于0

在利用单纯形法求解目标为最大的线性规划问题时,解为最优的判断依据是()

A.所有变量的检验数都大于等于0

B.所有变量的检验数都大于0

C.所有变量的检验数都小于等于0

D.所有变量的检验数都小于0


参考答案和解析
转换为标准形

相关考题:

用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数Cj-Zj≤0,则问题达到最优。() 此题为判断题(对,错)。

● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

利用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。 A.正B.负C.非正D.非负

利用单纯形法求解线性规划问题时,首先需要()。 A.找初始基础可行基B.检验当前基础可行解是否为最优解C.确定改善方向D.确定入变量的最大值和出变量

用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。 A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解

线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

下列关于线性规划叙述正确的是()。A、线性规划问题,若有最优解,则必是一个基变量组的可行基解B、线性规划问题一定有可行基解C、线性规划问题的最优解只能在最低点上达到D、单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次

用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为()。A、0B、很大的正数C、很大的负数D、1

如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()的集合中进行搜索即可得到最优解

使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题()A、有唯一的最优解B、有无穷多最优解C、为无界解D、无可行解

单纯形法求解时,若求得的基础解满足非负要求,则该基础解为()。A、可行解B、最优解C、特解D、可行基解

用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题()。A、有惟一最优解B、有多重最优解C、无界D、无解

如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A、基B、基本解C、基可行解D、可行域

下列说法正确的是()A、分支定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分支迭代求出最优解。B、用割平面法求解整数规划问题,构造的解割平面有可能切去一些不属于最优解的整数解。C、用分支定界发求解一个极大化的整数规划时,当得到多于一个可行解时,通常可任取其中一个作为下界,再进行比较剪支。D、整数规划问题的最优值优于其相应的线性规划问题的最优值。

求解线性规划问题可能的结果有无解,有唯一最优解,有()最优解

用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。A、正B、负C、非正D、非负

在用单纯形法求解线性规划问题时,下列说法错误的是()。A、如果在单纯形表中,所有检验数都非正,则对应的基本可行解就是最优解B、如果在单纯形表中,某一检验数大于零,而且对应变量所在列中没有正数,则线性规划问题没有最优解C、利用单纯形表进行迭代,我们一定可以求出线性规划问题的最优解或是判断线性规划问题无最优解D、如果在单纯形表中,某一检验数大于零,则线性规划问题没有最优解

对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。

单选题用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。A正B负C非正D非负

单选题使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题()A有唯一的最优解B有无穷多最优解C为无界解D无可行解

单选题用单纯形法求解目标函数为极大值的线性规划问题,当所有非基变量的检验数均小于零时,表明该问题()A有无穷多最优解B无可行解C有且仅有一个最优解D有无界解

单选题用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为()。A0B很大的正数C很大的负数D1

单选题用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题()。A有惟一最优解B有多重最优解C无界D无解

单选题关于求解线性规划最大值问题的最优解,叙述正确的是()A对某个线性规划问题,最大值可能不存在,也可能有一个或多个最大值B若有最优解,则最优的可行基解必唯一C基变量均非负,非基变量均为0,这种解就是最优解D若有最优解,则最大值必唯一,但最优解不一定唯一

单选题下列关于线性规划叙述正确的是()。A线性规划问题,若有最优解,则必是一个基变量组的可行基解B线性规划问题一定有可行基解C线性规划问题的最优解只能在最低点上达到D单纯型法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次

填空题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()的集合中进行搜索即可得到最优解

单选题如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。A基B基本解C基可行解D可行域

判断题对于线性规划问题,已知原问题基本解不可行,对偶问题基本解可行,可采用对偶单纯形法求解。A对B错