线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。

A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到

B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变

C.线性规划问题如果存在可行解,则一定有最优解

D.线性规划问题的最优解只可能是0个、1个或无穷多个


相关考题:

● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

线性规划约束条件不包括()。A、非负变量B、指数变量C、松弛变量D、决策变量

线性规划问题的特点是()。A、变量数无约束B、1个及以上的线性目标函数C、线性约束均为等式D、约束条件限制为实际的资源投入量

利用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。 A.正B.负C.非正D.非负

线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

试题(53)、(54)线性规划问题就是求出一组变量,在一组线性约束条件下,使某个线性目标函数达到极大(小)值。满足线性约束条件的变量区域称为可行解区。由于可行解区的边界均是线性的(平直的),属于单纯形,所以线性目标函数的极值只要存在,就一定会在可行解区边界的某个顶点达到。因此,在求解线性规划问题时,如果容易求出可行解区的所有顶点,那么只要在这些顶点处比较目标函数的值就可以了。例如,线性规划问题:max S=x+y(求S=x+y的最大值);2x+y≤7,x+2y≤8,x≥0,y≥0的可行解区是由四条直线2x+y=7,x+2y;8,x=0,y=0围成的,共有四个顶点。除了原点外,其他三个顶点是(53)。因此,该线性规划问题的解为 (54) 。(53)A. (2,,(0,7),(3.5,0)B. (2,3),(0,4),(8,0)C. (2,3),(0,7),(8,O)D. (2,3),(0,4),(3.5,0)(54)A. x=2, y=3B.x=0, y=7C.x=0, y=4D.x=8, y=0

求解约束条件为“=”型的线性规划、构造基本矩阵时,可用的变量有( )A.人工变量B.松弛变量C.多余变量D.负变量E.稳态变量

线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是(52)。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

下列有关线性规划问题的标准形式的叙述中错误的是()。A、目标函数求极大B、约束条件全为等式C、约束条件右端常数项全为正D、变量取值全为非负

某个线性规划模型的所有可行解中,全部变量都是正数或0,原因是该问题具有()A、目标函数B、求极大值的要求C、资源约束条件D、变量非负条件

线性规划问题的数学模型由目标函数、约束条件以及()三个部分组成。A、非负条件B、顶点集合C、最优解D、决策变量

线性规划问题的标准形式中,约束条件取等式,目标函数求(),而所有变量必须非负

线性规划问题是求一个()在一组线性约束条件下的极值问题。

线性规划问题的“线性”是指()A、目标函数是关于决策变量的线性函数B、约束条件是关于决策变量的线性等式C、约束条件是关于决策变量的线性不等式D、以上说法均不正确

如果线性规划问题有可行解,那么该解必须满足()A、所有约束条件B、变量取值非负C、所有等式要求D、所有不等式要求

用单纯形法求解线性规划问题时,判断当前解是否为最优解的标准为所有非基变量的检验数应为()。A、正B、负C、非正D、非负

在线性规划问题中,称满足所有约束条件方程和非负限制的解为()

用动态规划求解一般线性规划问题是将约束条件数作为阶段数,变量作为状态。()

X是线性规划的基本可行解则有()A、X中的基变量非零,非基变量为零B、X不一定满足约束条件C、X中的基变量非负,非基变量为零D、X是最优解

多选题线性规划问题的“线性”是指()A目标函数是关于决策变量的线性函数B约束条件是关于决策变量的线性等式C约束条件是关于决策变量的线性不等式D以上说法均不正确

判断题用动态规划求解一般线性规划问题是将约束条件数作为阶段数,变量作为状态。()A对B错

单选题某个线性规划模型的所有可行解中,全部变量都是正数或0,原因是该问题具有()A目标函数B求极大值的要求C资源约束条件D变量非负条件

单选题关于求解线性规划最大值问题的最优解,叙述正确的是()A对某个线性规划问题,最大值可能不存在,也可能有一个或多个最大值B若有最优解,则最优的可行基解必唯一C基变量均非负,非基变量均为0,这种解就是最优解D若有最优解,则最大值必唯一,但最优解不一定唯一

填空题在线性规划问题中,称满足所有约束条件方程和非负限制的解为()

填空题线性规划问题是求一个()在一组线性约束条件下的极值问题。

单选题如果线性规划问题有可行解,那么该解必须满足()A所有约束条件B变量取值非负C所有等式要求D所有不等式要求

填空题线性规划问题的标准形式中,约束条件取等式,目标函数求(),而所有变量必须非负