实轴上某段为根轨迹,其两侧同为系统开环零点,则该段上必定有()

实轴上某段为根轨迹,其两侧同为系统开环零点,则该段上必定有()


参考答案和解析
正确

相关考题:

系统的开环传递函数为K/[s(s+1)(s+2)],则实轴上的根轨迹为() A、(-2,-1)和(0,∞)B、(-∞,-2)和(-1,0)C、(0,1)和(2,∞)D、(-∞,0)和(1,2)

根轨迹是以实轴为对称的,故根轨迹的分离、会合点均位于实轴上。() 此题为判断题(对,错)。

()是用来确定根轨迹上某点的相应增益值。 A.辐角条件B.开环零点C.开环增益D.幅值条件

以下关于根轨迹的描述正确的是( )。 A根轨迹起点是开环极点,终点是开环零点B根轨迹渐近线对称于实轴C分离点一定位于实轴上D分支数与开环有限零、极点中大者相同

根轨迹起点由系统的()决定。A开环极点B开环零点C闭环极点D闭环零点

若在实轴上相邻开环零点之间存在根轨迹,则在此区间上一定有汇合点。() 此题为判断题(对,错)。

若在实轴上相邻开环极点之间存在根轨迹,则在此区间上一定有分离点。() 此题为判断题(对,错)。

在实轴上根轨迹分支存在的区间的右侧,开环零、极点数目的总和为偶数。() 此题为判断题(对,错)。

有关分离点与会合点下列说法错误的是()。A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

实轴上属于根轨迹的部分,其右边开环零、极点的个数之和为()。A、奇数B、偶数C、零D、正数

系统开环零点数等于系统的根轨迹的条数。()

系统的根轨迹起始于开环极点,终止于开环零点。

系统的根轨迹起始于开环极零点,终止于开环极点。

实轴上二开环极点间有根轨迹,则它们之间必有汇合点。

实轴上二开环零点间有根轨迹,则它们之间必有汇合点。

实轴上的某一区域,若其右边开环实数零、极点个数之和为(),则该区域必是根轨迹。

以下关于控制系统根轨迹法描述正确的是:()A、根轨迹法是求解闭环系统特征方程根的一种图式法B、在已知系统开环零、极点在s平面分布的情况下,绘制系统闭环极点在s平面随某一参数变化时的运动轨迹C、绘制根轨迹时,凡是满足幅值条件的点都在根轨迹上D、根轨迹起始于系统开环极点终止于系统开环零点

若系统仅具有两个开环极点和一个开环零点,则根轨迹是()。A、圆弧B、直线C、圆弧或直线

根轨迹是指开环系统某个参数由0变化到∞,()在s平面上移动的轨迹。A、开环零点B、开环极点C、闭环零点D、闭环极点

()是用来确定根轨迹上某点的相应增益值。A、辐角条件B、幅值条件C、开环增益D、开环零点

如果系统的有限开环零点数m少于其开环极点数n,则当根轨迹增益趋近于无穷大时,趋向无穷远处根轨迹的渐近线共有()条。A、nB、mC、n-mD、m-n

实轴上根轨迹右端的开环实数零点、极点的个数之和为()A、零B、大于零C、奇数D、偶数

有关分离点与会合点下列说法错误的是是()A、分离点与会合点一般是实数或共轭复数对B、若实轴上两相邻极点间存在根轨迹,则这两相邻极点间必有分离点C、若实轴上两相邻零点间存在根轨迹,则这两相邻极点间必有会合点D、若实轴上根轨迹处在开环邻零点和极点之间,则二者之间必定有分离点和会合点

如果根轨迹位于实轴上两个相邻的开环零点之间,那么这两个零点之间必定存在()。

增加一个开环极点,对系统的根轨迹有以下影响()。A、改变根轨迹在实轴上的分布B、改变根轨迹渐近线的条数、倾角和截距C、改变根轨迹的分支数D、根轨迹曲线将向左移动,有利于改善系统的动态性能

以下关于控制系统根轨迹法描述错误的是:()A、根轨迹法的分支数与开环有限零点数m和开环有限极点数n中的大者相等B、当开环有限零点数m小于开环有限极点数n时,有n-m条根轨迹分支终止于无穷远处C、实轴上某区域,若其右侧开环实数零、极点个数之和为偶数,则该区域具有根轨迹D、一部分根轨迹分支向右移动则必定有一部分根轨迹分支向左移动

判断题实轴上二开环零点间有根轨迹,则它们之间必有汇合点。A对B错

判断题实轴上二开环极点间有根轨迹,则它们之间必有汇合点。A对B错