戈里瑟检验是利用辅助回归的相关统计量来判断辅助回归中X的参数是否显著为零来判断模型是否存在异方差的
戈里瑟检验是利用辅助回归的相关统计量来判断辅助回归中X的参数是否显著为零来判断模型是否存在异方差的
参考答案和解析
异方差
相关考题:
在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏 A、Ⅰ.Ⅱ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅱ.Ⅲ.Ⅳ
在估计出多元线性回归模型后,思考多元线性回归模型的一系列检验,据此回答以下两题。这些检验包括回归模型的( )A.线性关系显著性检验B.回归系数显著性检验C.拟合优度检验D.自相关和异方差检验
下列关于异方差性检验的叙述,正确的是()。A、通过图示法可以精确判断模型是否存在异方差性B、戈德菲尔德—匡特检验需要对样本进行排序C、戈德菲尔德—匡特检验不需要对样本进行排序D、怀特检验需要对样本进行排序
自相关情况下将导致()A、参数估计量不再是最小方差线性无偏估计量B、均方差MSE可能严重低估误差项的方差C、常用的F检验和t检验失效D、参数估计量是无偏的E、利用回归模型进行预测的结果会存在较大的误差
下列关于异方差性、自相关性和多重共线性的说法,正确的有()。A、当存在异方差性、自相关性和多重共线性时,都会导致参数显著性检验失去意义B、当存在异方差性、自相关性和多重共线性时,利用普通最小二乘法的估计量都存在C、当存在异方差性、自相关性和多重共线性时,仍然可以进行模型预测D、当存在异方差性、自相关性和多重共线性时,如果参数估计量存在,那么都具有有效性E、当存在异方差性、自相关性和多重共线性时,都可以通过一定的方法进行补救
在进行回归分析时,要对残差进行分析和诊断,这样做的目的是()A、通过残差的分布形态判断是否还存在其他潜在的关键XB、通过残差分布的随机性,判断所选择的回归模型是否合适C、通过残差的分布,判断X对Y影响是否显著D、通过残差的分布,判断是否有远离模型的异常观测值存在
单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致()。 Ⅰ 参数估计量非有效 Ⅱ 变量的显著性检验无意义 Ⅲ 模型的预测失效 Ⅳ 参数估计量有偏AI、Ⅱ、ⅢBI、Ⅱ、ⅣCI、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ
多选题自相关情况下将导致()A参数估计量不再是最小方差线性无偏估计量B均方差MSE可能严重低估误差项的方差C常用的F检验和t检验失效D参数估计量是无偏的E利用回归模型进行预测的结果会存在较大的误差
单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ
不定项题At检验是检验解释变量戈,对因变量),的影响是否显著Bt检验是从回归效果检验回归方程的显著性CF检验是检验解释变量Xl对因变量),的影响是否显著DF检验是从回归效果检验回归方程的显著性
单选题对于自回归模型,检验是否存在序列相关的方法是()ADW检验B方差比检验C自相关系数检验Dh检验法