4、多元线性回归模型中,方程的显著性检验检验的是每个解释变量对被解释变量是否有显著的线性影响。
4、多元线性回归模型中,方程的显著性检验检验的是每个解释变量对被解释变量是否有显著的线性影响。
参考答案和解析
回归方程的显著性检验包括对回归方程线性关系的检验(F检验)(即方程显著性检验)以及对回归方程系数显著性进行的检验(检验)。前者主要是检验因变量同多个自变量的线性关系是否显著,在K个自变量中,只要有一个自变量与因变量的线性关系显著,F检验就能通过。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否显著。
相关考题:
根据某地区1996-2015年的亩产量(公斤,y)、降雨量(毫米、x1)以及气温(度,x2)的统计数据进行回归分析,得到如下结果:R=0.9193,R2=0.8451,调整R2=0.8269对于回归方程来说,( )。A.t检验是检验解释变量xi对因变量y的影响是否显著B.t检验是从回归效果检验回归方程的显著性C.F检验是检验解释变量xi对因变量y的影响是否显著D.F检验是从回归效果检验回归方程的显著性
根据某地区 1966-2015 年的亩产量(公斤,y)/降雨量(毫米、 )以及气温(度,)的统计数据进行回归分析,得如下结果:y?? -834.05? 2.6869x?+59.0323x?R=0.9193, R2=0.8451 调整 R2=0.8269请根据上述资料回答下列问题:对于回归方程来说,( )A.t 检验是检验解释变量Xi对因变量 y 的影响是否显著B.t 检验是从回归效果检验回归方程的显著性C.F 检验是检验解释变量Xi对因变量 y 的影响是否显著D.F 检验是从回归效果检验回归方程的显著性
若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅱ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ
若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。 Ⅰ 回归参数估计量非有效 Ⅱ 变量的显著性检验失效 Ⅲ 模型的预测功能失效 Ⅳ 解释变量之间不独立A.I、Ⅱ、ⅢB.I、Ⅱ、IIC.I、Ⅲ、ⅣD.Ⅱ、Ⅲ、Ⅳ
在多元线性回归分析中,如果t检验表明回归系数不显著,则意味着()A、整个回归方程的线性关系不显著B、整个回归方程的线性关系显著C、该自变量与因变量之间的线性关系不显著D、该自变量与因变量之间的线性关系显著
单选题若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ
单选题回归分析中t检验是回归系数的显著性检验,以下说法不正确的是()。At检验用于判定预测模型变量x和y间线性关系是否成立B数据样本量n对回归系数和回归检验有重要影响Ct分布表的t值只与数据样本量n有关Dtbt值,说明回归系数显著性不为0,参数t检验通过,变量x和y间线性关系合理
单选题在多元线性回归分析中,如果t检验表明回归系数不显著,则意味着()A整个回归方程的线性关系不显著B整个回归方程的线性关系显著C该自变量与因变量之间的线性关系不显著D该自变量与因变量之间的线性关系显著
不定项题At检验是检验解释变量戈,对因变量),的影响是否显著Bt检验是从回归效果检验回归方程的显著性CF检验是检验解释变量Xl对因变量),的影响是否显著DF检验是从回归效果检验回归方程的显著性