图示匀质杆AB长l,质量为m。点D距点A为1/4l。杆对通过点D且垂直于AB的轴y的转动惯量为:

图示匀质杆AB长l,质量为m。点D距点A为1/4l。杆对通过点D且垂直于AB的轴y的转动惯量为:



参考解析

解析:提示:应用转动惯量的移轴定理。

相关考题:

一均质杆AB,长为L,质量为m,以角速度ω绕O轴转动,则杆对过O点的Z轴的动量矩LZ大小为()。A.LZ=1/12mL2ωB.LZ=1/3mL2ωC.LZ=7/48mL2ωD.LZ=1/4mL2ω

质量为m,长为2l的均质杆初始位于水平位置, 如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB 杆B处的约束力大小为:

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

在图示定平面Oxy内,杆OA可绕轴O转动,杆AB在点A与杆OA铰接,即杆AB可绕点A转动。该系统称为双摆,其自由度数为:A.1个B.2个C.3个D.4个

匀质细直杆AB长为l,B端与光滑水平面接触如图示,当AB杆与水平面成θ角时无初速下落,到全部着地时,则B点向左移动的距离为( )。

均质细直杆OA长为l,质量为m,A端固结一质量为m的小球(不计尺寸),如图所示。当OA杆以匀角速度绕O轴转动时,该系统对O轴的动量矩为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:

图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:A. FI=mRα ,MIC=1/3mL2α B. FI=mRω2 ,MIC = 0

均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。

图示均质细直杆AB长为l,质量为m,图示瞬时A点的速度为则AB杆的动量大小为:

杆AB长为l,质量为m,图示瞬时点A处的速度为v,则杆AB的动量大小为:

图示凸轮机构,凸轮以等角速度ω绕通过O点且垂直于图示平面的轴转动,从而推动杆AB运动。已知偏心圆弧凸轮的偏心距OC=e,凸轮的半径为r,动系固结在凸轮上,静系固结在地球上,则在图示位置()杆AB上的A点牵连速度的大小等于(  )。

在定平面Oxy 内,杆OA 可绕轴O 转动,杆AB 在点A 与杆OA 铰接,即杆AB 可绕点A 转动。该系统称为双摆,其自由度数为:(A)1 个(B)2 个(C)3 个(D)4 个

匀质杆AB 长l ,质量为m,质心为C。点D 距点A 为1/4,杆对通过点D 且垂直于AB 的轴y 的转动惯量为:

均质细直杆OA长为l ,质量为m,A端固结一质置为m的小球(不计尺寸),如图所示。当OA杆以匀角速度w绕O轴转动时,该系统时O轴的动量矩为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

均质细直杆长为l,质量为m,图示瞬时点A处的速度为v,则杆AB的动量大小为:

图示匀质杆AB长l,质量为m。点D距点A为1/4l。杆对通过点D且垂直于A

如图4-61所示匀质杆AB长l,质量为C。点D距点A为1/4l。杆对通过点D且垂直于的轴y的转动惯量为( )。

质量为m,长为2l的均质细杆初始位于水平位置,如图4-68所示。A端脱落后, 杆绕轴B转动,当杆转到铅垂位置时,AB杆B处的约束力大小为( )。

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。

质量可忽略的轻杆,长为L,质量都是m的两个质点分别固定于杆的中央和一端,此系统绕另一端点转动的转动惯量I1=();绕中央点的转动惯量I2=()。