设某算法的计算时间可用递推关系式T(n)=2T(n/2)+n表示,则该算法的时间复杂度为(1)。A.O(lgn)B.O(nlgn)C.O(n)D.O(n2)
设某算法的计算时间可用递推关系式T(n)=2T(n/2)+n表示,则该算法的时间复杂度为(1)。
A.O(lgn)
B.O(nlgn)
C.O(n)
D.O(n2)
相关考题:
某算法的时间复杂度表达式为T(n)=an2+bnlgn+cn+d,其中,n为问题的规模,a、b、c和d为常数,用O表示其渐近时间复杂度为( )。A.(n2)B.O(n)C.O(nlgn)D.O(1)
下面算法的时间复杂度为(34)。 int f(unsigned int n){ if(n=0||n==1)return 1; else return n*f(n-1); }A.O(1)B.O(n)C.O(n2)D.O(n!)
算法的主运算如下,其中i的初值为1,s的初值为0,“←”为赋值号。 while i<n do { for j←1 to n do s←s+a[i,j] i←i*2; 则该算法的时间复杂度为 ( )A.O(2n)B.O(n+log2n)C.O(nlog2n)D.O(n2)
对n个基本有序的整数进行排序,若采用插入排序算法,则时间和空间复杂度分别为(62);若采用快速排序算法,则时间和空间复杂度分别为(63)。A.O(n2)和O(n)B.O(n)和O(n)C.O(n2)和O(1)D.O(n)和O(1)
计算N!的递归算法如下,求解该算法的时间复杂度时,只考虑相乘操作,则算法的计算时间T(n)的递推关系式为(55);对应时间复杂度为(56)。int Factorial (int n){//计算n!if(n<=1)return 1;else return n * Factorial(n-1);}(62)A.T(n)=T(n-1)+1B.T(n)=T(n-1)C.T(n)=2T(n-1)+1D.T(n)=2T(n-1)-1
设求解某问题的递归算法如下:F(int n){if n=1 {Move(1)}else{F(n-1);Move(n);F(n-1);}}求解该算法的计算时间时,仅考虑算法Move所做的计算为主要计算,且Move为常数级算法。则算法F的计算时间T(n)的递推关系式为(9);设算法Move的计算时间为k,当 n=4时,算法F的计算时间为(10)。A.T(n)=T(n-1)+1B.T(n)=2T(n-1)C.T(n)=2T(n-1)+1D.T(n)=2T(n+1)+1
在某个算法时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为( ),若问题的规模增加了16倍,则运行时间增加( )倍。A.(n) B.(nlgn) C.(n2) D.(n2lgn) A.16 B.64 C.256 D.1024
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为 (请作答此空) ,若问题的规模增加了16倍,则运行时间增加 ( ) 倍。A.O(n)B.O(nlgn)C.O(n2)D.O(n2lgn)
某个算法的时间复杂度递归式T(n)=T(n-1)+n,其中n为问题的规模,则该算法的渐进时间复杂度为(62),若问题的规模增加了16倍,则运行时间增加(63)倍。 A.O(n)B.O(nlgn)C.O(n2)D.O(n2lgn)