一质点沿直线运动,运动方程为x(t)= 62t-23t.试求: (1)第2s内的位移和平均速度;  (2)1s末及2s末的瞬时速度,第2s内的路程;  (3)1s末的瞬时加速度和第2s内的平均加速度。

一质点沿直线运动,运动方程为x(t)= 62t-23t.试求: (1)第2s内的位移和平均速度;  (2)1s末及2s末的瞬时速度,第2s内的路程;  (3)1s末的瞬时加速度和第2s内的平均加速度。


相关考题:

质点沿x轴运动,运动方程为x=2t2+6(SI),则质点的加速度大小为( )A.2m/s2 B.4m/s2 C.6m/s2 D.8m/s2

质点沿任意曲线运动,t时刻质点的极坐标为p(t)=beac,θ(t)=ct,试求此时刻质点的速度、加速度,并写出质点运动的轨道方程,式中α、b和c都是常量。

一质点沿直线运动,其运动方程为x=2+4t-2t2(SI),在t从0到3s的时间间隔内,质点的位移大小为( )A.10mB.8mC.6mD.4m

一平面简谐波沿X轴正向传播,已知x=L(L<λ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为( )。A.y=Acosω(t+L/u)B.y=Acosω(t-L/u)C.y=Acos(ωt+L/u)D.y=Acos(ωt-L/u)

某质点做直线运动,其运动方程x=t2-12t,前5秒内,点做(  )运动。A.匀速B.匀加速C.匀减速D.惯性

某质点作直线运动的运动学方程为x=3t-5t3%+6(SI),则该质点作( )。A.匀加速直线运动.加速度沿x轴正方向B.匀加速直线运动.加速度沿x轴负方向C.变加速直线运动.加速度沿x轴正方向D.变加速直线运动.加速度沿x轴负方向

一质点作直线运动,已知其加速度a=2-2t,初始条件为xo=0,υo=0。(1)质点在第1秒末的速度;(2)质点的运动方程;(3)质点在前3秒内运动的路程。

一质点沿y轴方向做简谐振动,振幅为A,周期为T,平衡位置在坐标原点。在t=0时刻,质点位于y正向最大位移处,以此振动质点为波源,传播的横波波长为λ,则沿x轴正方向传播的横波方程为( )。

一质点沿ox轴正方向运动的运动方程是x=t3-2t2+t+5,经过2s后它瞬时速度(),瞬时加速度是()

一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acos(∞t+φ0),波速为u,那么x=0处质点的振动方程为:()A、y=Acos[ω(t+L/u)+φ0]B、y=Acos[ω(t-L/u)+φ0]C、y=Acos[ωt+L/u+φ0]D、y=Acos[ωt-L/u+φ0]

一质点做匀加速直线运动,加速度为a,t秒末的位移为x,则t秒末质点的速度为()A、v=1.0m/sB、v=atC、v=0.76m/sD、2.0m/s²

某质点的运动方程为x=5+2t-10t2(m),则该质点作()A、匀加速直线运动,加速度为正值B、匀加速直线运动,加速度为负值C、变加速直线运动,加速度为正值D、变加速直线运动,加速度为负值

某质点的运动方程为 x=6+12t+t3(SI),则质点的速度一直增大.

一质点沿x轴作直线运动,它的运动学方程为x=3+5t+6t2t3(SI),则加速度为零时,该质点的速度u=()

一平面简谐波沿X轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,那么x=0处质点的振动方程为()。A、y=Acosω(t+L/u)B、y=Acosω(t-L/u)C、y=Acos(ωt+L/u)D、y=Acos(ωt-L/u)

某质点的运动学方程x=6+3t+5t3,则该质点作()A、匀加速直线运动,加速度为正值B、匀加速直线运动,加速度为负值C、变加速直线运动,加速度为正值D、变加速直线运动,加速度为负值

一质点沿x轴运动,其运动方程为x=5t-3t3,其中t以s为单位。当t=2s时,该质点正在()A、加速B、减速C、匀速D、静止

某质点的运动方程为x=3t-5t3+6(SI),则该质点作()A、匀加速直线运动,加速度沿X轴正方向B、匀加速直线运动,加速度沿X轴负方向C、变加速直线运动,加速度沿X轴正方向D、变加速直线运动,加速度沿X轴负方向

某质点作直线运动的运动学方程为x=3t-5t3+6,则该质点作何运动?加速度方向?

某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则该质点作()A、匀加速直线运动,加速度沿x轴正方向B、匀加速直线运动,加速度沿x轴负方向C、变加速直线运动,加速度沿x轴正方向D、变加速直线运动,加速度沿x轴负方向

一质点沿直线运动,其运动学方程为x=6t-t2(SI),则在t由0至4s的时间间隔内,质点的位移大小为()。A、8mB、8.25mC、5mD、10m

一质点沿x轴作简谐振动,振动方程为x=0.04cos[2πt+(1/3)π](SI),从t=0时刻起,到质点位置在x=-0.02m处,且向x轴正方向运动的最短时间间隔为()A、(1/8)sB、(1/6)sC、(1/4)sD、(1/2)s

单选题一平面简谐波沿z轴正向传播,已知x=L(Lλ)处质点的振动方程为Y=Acoswt,波速为u,那么x=0处质点的振动方程为()。Ay=Acos(wt+L/u)By=Acos(wt-L/u)Cy=Acosw(t+L/u)Dy=Acosow(t-L/u)

单选题一平面简谐波沿x轴正向传播,已知x=L(Lλ)处质点的振动方程为y=Acosωt,波速为u,则波动方程为()Ay=Acosω[t-(x-L)/u]By=Acosω[t-(x+L)/u]Cy=Acosω[t+(x+L)/u]Dy=Acosω[t+(x-L)/u]

单选题一质点沿轴运动,其运动方程为,则质点在前4秒内走过的路程为(  )。A10mB8mC9mD6m

问答题质点直线运动的运动学方程为x=acost,a为正常数,求质点速度和加速度,并讨论运动特点。(有无周期性,运动范围,速度变化情况等)

问答题质点沿直线的运动学方程为x=10t+3t2, ⑴将坐标原点沿o-x正方向移动2m,运动学方程如何?初速度有无变化? ⑵将计时起点前移1s,运动学方程如何?初始坐标和初速度发生怎样的变化?加速度变不变?