一质量为M,半径为R的飞轮绕中心轴以角速度ω作匀速转动,其边缘一质量为m的碎片突然飞出,则此时飞轮的()。A、角速度减小,角动量不变,转动动能减小B、角速度增加,角动量增加,转动动能减小C、角速度减小,角动量减小,转动动能不变D、角速度不变,角动量减小,转动动能减小
一质量为M,半径为R的飞轮绕中心轴以角速度ω作匀速转动,其边缘一质量为m的碎片突然飞出,则此时飞轮的()。
- A、角速度减小,角动量不变,转动动能减小
- B、角速度增加,角动量增加,转动动能减小
- C、角速度减小,角动量减小,转动动能不变
- D、角速度不变,角动量减小,转动动能减小
相关考题:
有一半径为R的匀质水平圆转台,绕通过其中心且垂直圆台的轴转动,转动惯量为J,开始时有一质量为m的人站在转台中心,转台以匀角速度w0转动,随后人沿着半径向外跑去,当人到达转台边缘时,转台的角速度为() A、w0B、Jw0/mR^2C、Jw0/(J+mR^2)D、Jw0/(J+2mR^2)
如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为( )mRrω。A.0.5B.1.0C.1.5D.2.0
如图所示圆环以角速度ω绕铅直轴AC自由转动,圆环的半径为R,对转轴的转动惯量为I;在圆环中的A点放一质量为m的小球,设由于微小的干扰,小球离开A点。忽略一切摩擦,则当小球达到B点时,圆环的角速度是( )。
确定物体绕某个轴的转动惯量,可以由理论计算也可通过实验测定。(1)用积分计算质量为m,半径为R的均质薄圆盘绕其中心轴的转动惯量。(2)该圆盘质量未知,可用如图9所示的实验方法测得该圆盘绕中心轴的转动惯量。在圆盘的边缘绕有质量不计的细绳,绳的下端挂一质量为m的重物,圆盘与转轴间的摩擦忽略不计。测得重物下落的加速度为a,求圆盘绕其中心轴的转动惯量。
直径为D的飞轮,以角速度ω绕其转轴作匀速转动,现发现飞轮轮缘横截面上的应力超过了材料的许用应力,若()则可降低轮缘横截面上的应力。A、增加轮缘横截面面积B、增大飞轮直径DC、减小轮缘横截面面积D、减小飞轮角速度ω
圆柱体定滑轮的质量为m,半径为R,绕其质心轴转动的角位移为θ=a+bt+ct2,a、b、c为常数,作用在定滑轮上的力矩为()A、(1/2)maR2B、bmR2C、(1/2)mbR2D、mcR2
单选题质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC= 。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。A K=0B K=mRwC K=mRwD K=2mRw