均质圆柱体半径为R,质量为m,绕与纸面垂直的固定水平轴自由转动,初瞬时静止(θ=0°),如图所示,则圆柱体在任意位置θ时的角速度是(  )。

均质圆柱体半径为R,质量为m,绕与纸面垂直的固定水平轴自由转动,初瞬时静止(θ=0°),如图所示,则圆柱体在任意位置θ时的角速度是(  )。



参考解析

解析:

相关考题:

质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:

均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

偏心轮为均质圆盘,其质量为m,半径为R,偏心距OC=R/2。若在图示位置时,轮绕O轴转动的角速度为ω,角加速度为α,则该轮的惯性力系向O点简化的主矢FI和主矩MIO的大小为:

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

均质圆柱体半径为R,质量为m,绕关于对纸面垂直的固定水平轴自由转动,初瞬时静止(G在O轴的铅垂线上),如图所示。则圆柱体在位置θ=90°时的角速度是(  )。

均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:

均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。

均质圆盘质量为m,半径为R,在铅垂面绕内O轴转动,图示瞬间角速度为ω,则其对O轴的动量矩大小为(  )。A.mRωB.mRω/2C.mR2ω/2D.3mR2ω/2

忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动,如图所示。系统的动能是:

均质圆盘质量为m,半径为R,再铅垂面内绕o轴转动,图示瞬吋角速度为w,则其对o轴的动量矩和动能的大小为:

如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。A.0.5B.1.0C.1.5D.2.0

如图所示圆环以角速度ω绕铅直轴AC自由转动,圆环的半径为R,对转轴的转动惯量为I;在圆环中的A点放一质量为m的小球,设由于微小的干扰,小球离开A点。忽略一切摩擦,则当小球达到B点时,圆环的角速度是(  )。

杆OA绕固定轴0转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA 的角速度及角加速度为:

图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为:

质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为O,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:

质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:

如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

如图所示的区域内有垂直于纸面的匀强磁场,磁感应强度为B。电阻为R、半径为L、圆心角为450的扇形闭合导线框绕垂直于纸面的0轴以角速度w匀速转动(O轴位于磁场边界)。则线框内产生的感应电流的有效值为( )。 A.B.C.D.

图4-67示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆轮中心O的水平轴以匀角速度ω转动。则系统动量、对中心O的动量矩、动能的大小为( )。

设质量分布均匀的圆柱体的质量为m,半径为R,绕中心旋转时的角速度为ω,则圆柱体的转动惯量为()。A、mR2B、mR2/2C、mRω