系统的闭环极点与()、()和根轨迹增益均有关。

系统的闭环极点与()、()和根轨迹增益均有关。


相关考题:

若两个系统的根轨迹相同,则有相同的( ) A 、闭环零点和极点B 、开环零点C 、闭环极点D 、阶跃响应

根轨迹终止于( )。 A.闭环零点B.开环零点C.闭环极点D.开环极点

决定闭环根轨迹的充分必要条件是()。 A.幅值方程B.相角方程C.开环增益D.零、极点

与根轨迹增益有关的是()。 A.闭环零、极点与开环零点B.闭环零、极点与开环极点C.开环零、极点与闭环零点D.开环零、极点与闭环极点

以下几项相等的是( )。 A根轨迹分支数B特征方程式阶次C闭环极点数目D开环零点数目

根轨迹起点由系统的()决定。A开环极点B开环零点C闭环极点D闭环零点

系统的根轨迹()。A、起始于开环极点,终于开环零点B、起始于闭环极点,终于闭环零点C、起始于闭环零点,终于开环极点D、起始于开环零点,终于开环极点

根轨迹是根据系统开环传递函数中的某个参数为参变量而画出的开环极点的根轨迹图。

绘制根轨迹时,我们通常是从Kg=0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。起点数n就是根轨迹曲线的条数。

根轨迹法就是利用已知的开环极、零点的位置,根据闭环特征方程所确定的几何条件,通过图解法求出Kg由0→∞时的所有闭环极点。

根轨迹是根据系统开环零极点分布而绘制出的闭环极点运动轨迹。

描述系统零输入状态的齐次微分方程的根是系统的()。A、闭环极点B、开环极点C、开环零点D、闭环零点

若相邻两极点间有根轨迹,则必有();若相邻两零点间有根轨迹,则必有();分离点实际上是相同的闭环特征值,即特征方程有()。

以下关于控制系统根轨迹法描述正确的是:()A、根轨迹法是求解闭环系统特征方程根的一种图式法B、在已知系统开环零、极点在s平面分布的情况下,绘制系统闭环极点在s平面随某一参数变化时的运动轨迹C、绘制根轨迹时,凡是满足幅值条件的点都在根轨迹上D、根轨迹起始于系统开环极点终止于系统开环零点

根轨迹是指开环系统某个参数由0变化到∞,()在s平面上移动的轨迹。A、开环零点B、开环极点C、闭环零点D、闭环极点

在平面上,如果有一些闭环极点往左移动,则必有另外一些闭环极点向(),以保持每个闭环极点之和恒等于()。这一性质可用来估计根轨迹分支的变化趋势。

如果系统的有限开环零点数m少于其开环极点数n,则当根轨迹增益趋近于无穷大时,趋向无穷远处根轨迹的渐近线共有()条。A、nB、mC、n-mD、m-n

与根轨迹增益有关的是()。A、闭环零、极点与开环零点B、闭环零、极点与开环极点C、开环零、极点与闭环零点D、开环零、极点与闭环极点

根轨迹是指系统闭环传递函数中某一参数变化时,闭环特征根在根平面上所走过的轨迹。

根轨迹终止于()。A、开环极点B、开环零点C、闭环极点D、闭环零点

增加一个开环极点,对系统的根轨迹有以下影响()。A、改变根轨迹在实轴上的分布B、改变根轨迹渐近线的条数、倾角和截距C、改变根轨迹的分支数D、根轨迹曲线将向左移动,有利于改善系统的动态性能

系统的闭环极点与外部输入信号的形式和作用点无关,但与输出信号的选取有关。

确定系统根轨迹的充要条件是()。A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次

判断题根轨迹是根据系统开环零极点分布而绘制出的闭环极点运动轨迹。A对B错

判断题绘制根轨迹时,我们通常是从Kg=0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。起点数n就是根轨迹曲线的条数。A对B错

单选题系统的根轨迹()。A起始于开环极点,终于开环零点B起始于闭环极点,终于闭环零点C起始于闭环零点,终于开环极点D起始于开环零点,终于开环极点

单选题描述系统零输入状态的齐次微分方程的根是系统的()。A闭环极点B开环极点C开环零点D闭环零点