在试验设计中,我们常常要将原来对于因子设定的各水平值实行“代码化”(Coding)。例如在2水平时,把“高”“低”二水平分别记为“+1”及“-1”。以下何者是對的:() A.比未代码化时提高了计算的精度。B.代码化后,可以通过直接比较各因子或因子间的交互作用的回归系数之绝对值以确定效应的大小,即回归系数之绝对值越大者该效应越显着;而未代码化时不能这样判断C.代码化后,删除回归方程中某些不显着之项时,其它各项回归系数不变;未代码化时,在删除某些不显着之项时其它各项回归系数可能有变化D.代码化后,回归方程式的常数项(截距)等于将自变数以"0"带入回归方程式后,输出变量(y)的预测值
在试验设计中,我们常常要将原来对于因子设定的各水平值实行“代码化”(Coding)。例如在2水平时,把“高”“低”二水平分别记为“+1”及“-1”。以下何者是對的:()
A.比未代码化时提高了计算的精度。
B.代码化后,可以通过直接比较各因子或因子间的交互作用的回归系数之绝对值以确定效应的大小,即回归系数之绝对值越大者该效应越显着;而未代码化时不能这样判断
C.代码化后,删除回归方程中某些不显着之项时,其它各项回归系数不变;未代码化时,在删除某些不显着之项时其它各项回归系数可能有变化
D.代码化后,回归方程式的常数项(截距)等于将自变数以"0"带入回归方程式后,输出变量(y)的预测值
相关考题:
为了研究轧钢过程中的延伸量控制问题,在经过2水平的4个因子的全因子试验后,得到了回归方程。其中,因子A代表轧压长度,低水平是40cm,高水平为100cm。响应变量Y为延伸量(单位为cm)。在代码化后的回归方程中,A因子的回归系数是3。问,换算为原始变量(未代码化前)的方程时,此回归系数应该是多少?() A.40B.4C.0.3D.0.1
在一个试验设计的分析问题中,建立响应变量与各因子及交互效应的回归方程可以有两种办法:一种是对各因子的代码值(CodedUnits)建立回归方程;另一种是直接对各因子的原始值(UncodedUnits)建立回归方程。在判断各因子或交互效应是否影响显着时,要进行对各因子回归系数的显着性检验时,可以使用这两种方程中的哪一种?() A.两种方程检验效果一样,用哪种都可以B.只有用代码值(CodedUnits)回归方程才准确;用原始值(UncodedUnits)回归方程有时判断不准确C.只有用原始值(UncodedUnits)回归方程才准确;用代码值(CodedUnits)回归方程有时判断不准确D.根本用不着回归方程,ANOVA表中结果信息已经足够进行判断
某一确定有限自动机(DFA)的状态转换图如图2-1所示,该DFA接受的字符串集是(7),与之等价的正规式是(8)。A.以1开头的二进制代码串组成的集合B.以1结尾的二进制代码串组成的集合C.包含偶数个0的二进制代码串组成的集合D.包含奇数个0的二进制代码串组成的集合
Fibnacci数列的定义为:F0=0,F1=1,Fn=Fn-1+Fn-2(n≥2,n∈N*),要计算该数列的任意项Fn,既可以采用递归方式编程也可以采用循环语句编程,由于( ),所以需要较多的运行时间。A.递归代码经编译后形成较长目标代码B.递归代码执行时多次复制同一段目标代码C.递归代码执行时需要进行一系列的函数调用及返回且存在重复计算D.递归代码执行过程中重复存取相同的数据
在因子设计阶段,对3个因子A、B、C进行两水平全因子的8次试验加上3个中心点试验后,可以确认3个主因子皆显著,但却发现了显著的弯曲,决定增做些试验点,形成响应曲面设计。一个团队成员建议在新设计中使用CCF(中心复合外切设计,CentralCompositeCircumscribe)设计,他这样建议的好处是()A、原有的11次试验结果仍然可以利用B、新设计仍保持有旋转性(Rotatability)C、新设计对每个因子仍只需安排3个水平D、新设计对每个因子的代码水平仍保持在(-1,1)范围内
在因子设计阶段,对3个因子A、B及C,进行二水平全因子共11次试验后,可以确认3者皆显著,但却发现了显著的弯曲。决定增做些试验点,形成响应曲面设计。一个团队成员建议在新设计中使用CCF(中心复合表面设计,Central Composite Face-Centered Design)。他这样建议的好处是()A、原有的11次试验结果仍然可以利用。B、新设计仍保持有旋转性(Rotatability)。C、新设计对每个因子仍只需安排3个水平。D、新设计对每个因子的代码水平仍保持在(-1,1)范围内。
在试验设计中,我们常常要将原来对于因子设定的各水平值实行―代码化‖(Coding)。例如在2水平时,把―高‖―低‖二水平分别记为―1‖及―-1‖。这样做的好处是()A、比未代码化时提高了计算的精度。B、代码化后,可以通过直接比较各因子或因子间的交互作用的回归系数之绝对值以确定效应的大小,即回归系数之绝对值越大者该效应越显著;而未代码化时不能这样判断。C、代码化后,删除回归方程中某些不显著之项时,其它各项回归系数不变;未代码化时,在删除某些不显著之项时其它各项回归系数可能有变化。D、由于代码化后,各因子或因子间的交互作用的回归系数之估计量间相互无关,如果在对系数进行系数显著性检验时,某系数P—value较大(例如大于0.2),证明它们效应不显著,可以直接将其删除;而未代码化时,各项回归系数间可能有关,因而即使某系数系数显著性检验时的P—value较大,也不能冒然删除。
在一个试验设计的分析问题中,建立响应变量与各因子及交互效应的回归方程可以有两种方法:一是对各因子的代码值(CodeUnits)建立回归方程;二是直接对各因子的原始值(UncodedUnits)建立回归方程。在判断各因子或交互作用是否影响显著时,要进行对各因子回归系数的显著性检验,可以使用这两种方法中的哪一种()?A、两种方程检验效果都一样,用哪种都可以B、只有用代码值(CodeUnits)建立的回归方程才准确;用原始值(UncodedUnits)建立的回归方程有时判断不一定准确C、只有用原始值(UncodedUnits)建立的回归方程才准确;用代码值(CodeUnits)建立的回归方程有时判断不一定准确D、根本用不着回归方程,ANOVA表中结果信息已经足够进行判断因子的显著性
以下关于DOE中代码化的说法正确的是()A、代码化是将该因子所取的低水平设定的代码值取为-1,高水平设定的代码值取为+1,中心水平为0B、代码化后的回归方程中,自变量及交互作用项的各系数可以直接比较,系数绝对值大者之效应比系数绝对值小者之效应更重要、更显著C、代码化后的回归方程内各项系数的估计量间是不相关的D、在自变量代码化后,回归方程中的常数项就有了具体的物理意义
为了研究轧钢过程中的延伸量控制问题,在经过2水平的4个因子的全因子试验后,得到了回归方程。其中,因子A代表轧压长度,低水平是50cm,高水平为70cm。响应变量Y为延伸量(单位为cm)。在代码化后的回归方程中,A因子的回归系数是4。问,换算为原始变量(未代码化前)的方程时,此回归系数应该是多少?()A、40B、4C、0.4D、0.2
在某个JSP页面中存在这样一行代码,%= “2” + “4” % 运行该JSP后,以下说法正确的是()。A、这行代码没有对应的输出B、这行代码对应的输出时6C、这行代码对应的输出时24D、这行代码将引发错误
智能手机感染恶意代码后的应对措施是()。A、联系网络服务提供商,通过无线方式在线杀毒B、把SIM卡换到别的手机上,删除存储在卡上感染恶意代码的短信C、通过计算机查杀手机上的恶意代码D、格式化手机,重装手机操作系统
多选题在因子设计阶段,对3个因子A、B及C,进行二水平全因子共11次试验后,可以确认3者皆显著,但却发现了显著的弯曲。决定增做些试验点,形成响应曲面设计。一个团队成员建议在新设计中使用CCF(中心复合表面设计,Central Composite Face-Centered Design)。他这样建议的好处是()A原有的11次试验结果仍然可以利用。B新设计仍保持有旋转性(Rotatability)。C新设计对每个因子仍只需安排3个水平。D新设计对每个因子的代码水平仍保持在(-1,1)范围内。
多选题在试验设计中,我们常常要将原来对于因子设定的各水平值实行―代码化‖(Coding)。例如在2水平时,把―高‖―低‖二水平分别记为―1‖及―-1‖。这样做的好处是()A比未代码化时提高了计算的精度。B代码化后,可以通过直接比较各因子或因子间的交互作用的回归系数之绝对值以确定效应的大小,即回归系数之绝对值越大者该效应越显著;而未代码化时不能这样判断。C代码化后,删除回归方程中某些不显著之项时,其它各项回归系数不变;未代码化时,在删除某些不显著之项时其它各项回归系数可能有变化。D由于代码化后,各因子或因子间的交互作用的回归系数之估计量间相互无关,如果在对系数进行系数显著性检验时,某系数P—value较大(例如大于0.2),证明它们效应不显著,可以直接将其删除;而未代码化时,各项回归系数间可能有关,因而即使某系数系数显著性检验时的P—value较大,也不能冒然删除。
单选题在一个试验设计的分析问题中,建立响应变量与各因子及交互效应的回归方程可以有两种方法:一是对各因子的代码值(CodeUnits)建立回归方程;二是直接对各因子的原始值(UncodedUnits)建立回归方程。在判断各因子或交互作用是否影响显著时,要进行对各因子回归系数的显著性检验,可以使用这两种方法中的哪一种()?A两种方程检验效果都一样,用哪种都可以B只有用代码值(CodeUnits)建立的回归方程才准确;用原始值(UncodedUnits)建立的回归方程有时判断不一定准确C只有用原始值(UncodedUnits)建立的回归方程才准确;用代码值(CodeUnits)建立的回归方程有时判断不一定准确D根本用不着回归方程,ANOVA表中结果信息已经足够进行判断因子的显著性
多选题在因子设计阶段,对3个因子A、B、C进行两水平全因子的8次试验加上3个中心点试验后,可以确认3个主因子皆显著,但却发现了显著的弯曲,决定增做些试验点,形成响应曲面设计。一个团队成员建议在新设计中使用CCF(中心复合外切设计,CentralCompositeCircumscribe)设计,他这样建议的好处是()A原有的11次试验结果仍然可以利用B新设计仍保持有旋转性(Rotatability)C新设计对每个因子仍只需安排3个水平D新设计对每个因子的代码水平仍保持在(-1,1)范围内
多选题以下关于DOE中代码化的说法正确的是()A代码化是将该因子所取的低水平设定的代码值取为-1,高水平设定的代码值取为+1,中心水平为0B代码化后的回归方程中,自变量及交互作用项的各系数可以直接比较,系数绝对值大者之效应比系数绝对值小者之效应更重要、更显著C代码化后的回归方程内各项系数的估计量间是不相关的D在自变量代码化后,回归方程中的常数项就有了具体的物理意义
单选题在代码设计中,下列哪些是代码设计的原则()。A标准化B规范化C唯一性D模块化