用动态规划方法求解0/1背包问题时,将“用前i个物品来装容量是X的背包”的0/1背包问题记为 KNAP(1,i,X),设fi(X)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为Wj和巧Pj(j=1~n)。则依次求解f0(X)、f1(X)、…、fn(X)的过程中使用的递推关系式为(58)。A.fi(X)=min{fi-1(X),fi-1(X)+pi}B.fi(X)=min{fi-1(X),fi-1(X-wi)+pi}C.fi(X)=max{fi-1(X),fi-1(X-wi)+pi}D.fi(X)=max{fi-1(X-wi),fi-1(X)+pi}

用动态规划方法求解0/1背包问题时,将“用前i个物品来装容量是X的背包”的0/1背包问题记为 KNAP(1,i,X),设fi(X)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为Wj和巧Pj(j=1~n)。则依次求解f0(X)、f1(X)、…、fn(X)的过程中使用的递推关系式为(58)。

A.fi(X)=min{fi-1(X),fi-1(X)+pi}

B.fi(X)=min{fi-1(X),fi-1(X-wi)+pi}

C.fi(X)=max{fi-1(X),fi-1(X-wi)+pi}

D.fi(X)=max{fi-1(X-wi),fi-1(X)+pi}


相关考题:

利用贪心法求解0/1背包问题时,(55)能够确保获得最优解。用动态规划方法求解 0/1背包问题时,将“用前i个物品来装容量是X的背包”的0/1背包问题记为KNAP(1,i,X),设fi(x)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为 wj和pj(j=1~n)。则依次求解f0(x)、f1(x)、...、fn(X)的过程中使用的递推关系式为(56)。.A.优先选取重量最小的物品B.优先选取效益最大的物品C.优先选取单位重量效益最大的物品D.没有任何准则

利用贪心法求解0/1背包问题时,(26)能够确保获得最优解。用动态规划方求解O/1背包问题时,将“用前i个物品来装容量是x的背包”的0/1背包问题记为KNAP(1,i,X)设fi(X)是KNAP(1,i,X)最优解的效益值,第j个物品的重量和放入背包后取得效益值分别为W和p(j=1~n),则依次求解f0(X),f1(X),…,fn(X)的过程中使用的递推关系式为(27)。A.优先选取重量最小的物品B.优先选取效益最大的物品C.优先选取单位重量效益最大的物品D.没有任何准则

考虑一个背包问题,共有n=5个物品,背包容量为W=10,物品的重量和价值分别为:w={2,2,6,5,4},v={6,3,5,4,6},求背包问题的最大装包价值。若此为0-1背包问题,分析该问题具有最优子结构,定义递归式为其中c(i,j)表示i个物品、容量为j的0-1背包问题的最大装包价值,最终要求解c(n,W)。 采用自底向上的动态规划方法求解,得到最大装包价值为(62),算法的时间复杂度为(63)。 若此为部分背包问题,首先采用归并排序算法,根据物品的单位重量价值从大到小排序,然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量,则得到的最大装包价值为(64),算法的时间复杂度为(65)。A.11B.14C.15D.16.67

4、关于背包问题,正确的是()A.01背包用动态规划求解,部分背包用贪心算法求解B.01背包用贪心算法求解,部分背包用动态规划求解C.背包问题都用贪心算法求解D.背包问题都用动态规划求解

OPT(i,w): 从1-i种物品中选择,放入容量为w的背包时的最大价值。这是()问题动态规划算法的递推函数。A.0/1背包B.恰好装满的0/1背包C.完全0/1背包D.多重0/1背包

OPT(i,w): 从1-i个物品中选择,放入容量为w的背包时的最大价值。这是()问题动态规划算法的递推函数。A.0/1背包B.恰好装满的0/1背包C.完全0/1背包D.多重0/1背包

0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。用动态规划法编写算法和程序实现0-1背包问题。并给出如下测试用例的求解过程:有5件物品,重量分别为(3,2,1,4,5),价值分别为(25,20,15,40,50),背包容量w=6。

关于背包问题,正确的是()A.01背包用动态规划求解,部分背包用贪心算法求解B.01背包用贪心算法求解,部分背包用动态规划求解C.背包问题都用贪心算法求解D.背包问题都用动态规划求解

背包问题,背包容量C=20 ,物品价值p =[4, 8,15, 1, 6,3], 物品重量w=[5, 3,2, 10, 4, 8], 如果是0-1背包问题,求装入背包的最大价值和相应装入物品。 (1)该问题最好使用()算法求解? A 动态规划算法 B 贪心算法 C 枚举算法 D 分治算法 (2)装入背包的最大价值是_____, (3)最大价值对应的物品编号为____、____、____、____。(从小到大)