举例说明不等式的基本性质与等式的基本性质的区别。

举例说明不等式的基本性质与等式的基本性质的区别。


相关考题:

解一元一次不等式组与解一元一次不等式有什么区别和联系?

利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x+3>-1 ;(2)6x≤5x-7;(3)-1/3x2/3 ;(4)4x≥-12 。

初中数学《不等式的性质》一、考题回顾二、考题解析【教学过程】(一)引入新课复习导入,先复习等式的性质,并提问学生:不等式是否也有类似的性质,进而引出这节课的课题——不等式的性质。(二)探索新知PPT展示4个式子,分别为15___12,15+3___12+3,15-3___12-3,15×3___12×3。学生活动:填上符号,并观察前3个式子,猜想对于一般的不等式是否也有这样的性质。教师提示学生类比等式性质1,总结不等式的这条性质,并及时纠正问题(可设置纠错环节),得到性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;接着由学生观察最后一个式子,小组活动对比等式两边都城乘(或除)同一个数的性质,说一说不等式的性质。学生活动,思考将题中的3换成-3,不等式的性质是否成立?并猜想不等式的性质应该怎么表述。预设学生能够回答不等式的性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变。性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变。由学生自由地列举一些符合不等式性质的式子,并与同桌分享。(三)课堂练习教师提问学生:不等式的性质与等式的性质有何区别?学生思考后给出答案,由教师总结:乘除法时,要认清乘(除)的是正数还是负数,负数不等号方向要改变。尝试利用不等式的性质解-4x>3并说一说用的哪一条性质。(四)小结作业提问:今天有什么收获?引导学生回顾:不等式的3条性质,等式性质与不等式性质的异同点。课后作业:思考不等式的性质除了这3条还有没有其他的性质。【板书设计】? ? ?不等式的性质? ? ?性质1:? ? ?性质2:? ? ?性质3:? ? ?异同点:1.本节课的教学目标是什么?2.本节课是用什么方法进行导入新课的?这样导入有什么作用?

“基本不等式”是高中数学教学中的重要内容,请完成下列任务:(1)在“基本不等式”起始课的“教学重点”设计中,有两种方案: ①强调基本不等式在求数值中的应用,将基本不等式的应用作为重点。 ②强调基本不等式的背景,过程与意义,将学生感受和体验“基本不等式”中“基本”的意义作为重点。 你赞同哪种方案?简述理由。(10分)(3)为了让高中生充分认识“基本不等式”中“基本”的意义,作为教师应该对此有多个维度的理解,请至少从两个维度谈谈你对“基本”意义的认识。(10分)

“基本不等式”是高中数学教学中的重要内容,请完成下列任务:(1)在“基本不等式”起始课的“教学重点”设计中,有两种方案:①强调基本不等式在求数值中的应用,将基本不等式的应用作为重点。②强调基本不等式的背景,过程与意义,将学生感受和体验“基本不等式”中“基本”的意义作为教学重点。你赞同哪种方案?简述理由。(2)给出的几何解释。(3)为了让高中生充分认识“基本不等式”中“基本”的意义,作为教师应该对此有多个维度的理解,请至少从两个维度谈谈你对“基本”意义的认识。

19、线性规划模型可以有不等式约束条件,但不等式约束条件只能是小于等于的不等式。

【填空题】情绪的性质与事件的性质基本一致;情绪的()与事件的大小基本一致。

2、在不等式的证明中,有一种方法是构造函数,通过对这个函数性质的研究,指向不等式的证明,这种方法本质上说就是一般化的方法。

解不等式主要是依据不等式的性质进行恒等变形的。