按行优先顺序存储下三角矩阵的非零元素,非零元素aij(1≤i≤j≤n)地址计算公式是 ______。A.LOC(aij)=LOC(a11)+i×(i+1)/2+iB.LOC(aij)=LOC(a11)+i×(i+1)/2+(i-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+iD.LOC(aij)=LOC(a11)+i×(i-1)/2+(i-1)

按行优先顺序存储下三角矩阵的非零元素,非零元素aij(1≤i≤j≤n)地址计算公式是 ______。

A.LOC(aij)=LOC(a11)+i×(i+1)/2+i

B.LOC(aij)=LOC(a11)+i×(i+1)/2+(i-1)

C.LOC(aij)=LOC(a11)+i×(i-1)/2+i

D.LOC(aij)=LOC(a11)+i×(i-1)/2+(i-1)


相关考题:

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(下标)(1≤j≤i≤n)的地址的公式为______。A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存储下三角矩阵 的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为A.LOC(aij=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存睹下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为______。A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤n)的地址的公式为其中入为每个数组元素所占用的存储单元空间。A.LOC(aij)=LOC(a11)+[i×(i+1)/2+j]*λB.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1)]*λC.LOC(aij)=LOC(a11)+[i×(i-1)/2+j]*λD.LOC(aij)=LOC(a11)+[i×(i+1)/2+(j-1))]*λ 下列题目基于下图所示的二叉树:

按行优先顺序存下三角矩阵的非零元素,则计算非元素aij(1≤j≤i≤n)的地址的公式为A.LOC(aij)=LOC(a11)+i×(i+1)/2+jB.LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+jD.LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1≤j≤i≤n)的地址的公式为Am=[*]A.LOC(aij)=LOC(a11)+i×(i+1)/2+iB.LOC(aij)=LOC(a11)+i×(i+1)/2+(i-1)C.LOC(aij)=LOC(a11)+i×(i-1)/2+iD.IOC(aij)=LOC(a11)+i×(i-1)/2+(i-1)

按行优先顺序存储下三角矩阵的非零元素,则计算非零元素aij(1jsin)的地址的公式为( )。A)LOC(aij)=LOC(a11)+i×(i+1)/2+jB)LOC(aij)=LOC(a11)+i×(i+1)/2+(j-1)C)LOC(aij)=LOC(a11)+i×(i-1)/2+jD)LOC(aij)=LOC(a11)+i×(i-1)/2+(j-1)