假设在Solow模型中,人均生产函数为y=k“5,储存率为s,人口增长率72一0.005,折旧率为d=0. 035。 (1)计算在储蓄率s-0. 16时的稳态人均资本存量。 (2)计算在储蓄率提高到s-0. 41后的稳态人均资本存量(保留一位小数)。
假设在Solow模型中,人均生产函数为y=k“5,储存率为s,人口增长率72一0.005,折旧率为d=0. 035。 (1)计算在储蓄率s-0. 16时的稳态人均资本存量。 (2)计算在储蓄率提高到s-0. 41后的稳态人均资本存量(保留一位小数)。
参考解析
解析:(1)当储蓄率s=0. 16,经济达到稳态水平时,有Ak=sy-(n+d)k=0,即:0. 16ko.5 - (0. 005+0. 035)k=0解得稳态人均资本存量为:k*=16。(2)当储蓄率提高到s=0. 41时,经济达到稳态水平时有:0. 41ko.5 - (0. 005+0. 035)k=0解得稳态人均资本存量为:k*≈105.1。经济初始处于稳定状态(k*=16),当储蓄率从0. 16上升到0.41时,储蓄曲线也随之向上移动,储蓄(投资)就高于折旧,于是人均资本存量增加,直到达到k2(k*≈105.1),经济重新达到稳态
相关考题:
考虑一个具有如下生产函数的经济体:Y=AK0.4 L0.6,其中K为资本,L为劳动。 假设每年的折旧率δ为5%,考虑简单的索罗增长模型,稳态时,求出人均资本存量的黄金律以及该黄金律水平下的人均产量水平、人均投资水平、人均消费水平。
假设一个经济的人均生产函数为y=k,其中k为人均资本:求: (1)经济的总量生产函数。 (2)在没有人口增长和技术进步的情况下,假定年折旧率为δ=10%,储蓄率为s=40%。那么稳态下的人均资本、人均产出和人均消费分别为多少?
假定总量生产函数为Y=(K)1/2(L)1/2。如果储蓄率为28%,人口增长率为1%,折旧率为6%。利用新古典增长模型,回答如下问题:(1)请计算稳态下的人均水平。(2)与黄金律水平相比,28%的储蓄率是过高,还是过低?(3)在向黄金律水平调整的过程中,人均消费、人均投资和人均产出的动态变化特征。
根据基本的Solow模型,假设储蓄率为s,人口增长率为n,资本折旧率为δ人均资本为k人均产出为请回答如下问题: (1)分别考察储蓄率上升和人口增长率上升对均衡状态人均产出的影响,并简要分析影响的传导机制。 (2)推导人均资本增长率的表达式,并通过图形说明初始人均资本越低,则对应的人均资本率越高。
考虑如下经济模型:生产方程:Y=F(K,L)=KαL1-α其中K为资本存量,L为工人数量。产出的一部分被用于消费,另一部分是储蓄为S。所有的储蓄被用于投资。资本存量的折旧率为ζ。假设技术进步和人口增长均为零。计算稳态时的人均资本量,人均产出和人均消费
在索罗增长模型( Solow model)中,假设生产函数为柯布一道格拉靳函数Y=KaL1-a,已知n、g、б 、a。 (1)写出生产函数的简约形式y=f(k),其中y为人均产出,是为人均资本存量。 (2)已知s值,求解稳定状态下的y*、k*、c*。 (3)当s值未知时,求解黄金规则水平下的稳态y*、k*、s*、c*。
在新古典增长模型中,已知生产函数为y=2k -0. 5k2,y为人均产出,k为人均资本,储蓄率s =0.1。人口增长率n=0.05,资本折旧率δ=0.05。试求: (1)稳态时人均资本和人均产量。 (2)稳态时人均储蓄和人均消费。
设一个经济的人均生产函数为y=如果储蓄率为28%,人口增长率为1%,技术进步速度为2%.折旧率为4%,那么,该经济的稳态产出为多少?如果储蓄率下降到10%,两人口增长率上升到4%,这时该经济的稳态产出为多少?
假设生产函数为Y=KaL1-a,其中,a=l/3,K表示资本,L表示劳动力。 (1)该生产函数是否具有规模收益不变的特征?请解释。 (2)假设该经济的劳动力刚好等于总人口,请将上述生产函数变化成人均产出与人均资本之间的关系。 (3)假设该经济每年的储蓄率为8/25,资本每年的折旧率为2/25。求稳态人均资本和稳态人均产出。 (4)现假设资本折旧率变为1/12,其他假设不变,请问当经济实现稳态时,若要使人均消费最大化,该经济的储蓄率应该是多少?人均消费达到最大化时,该经济的人均资本是多少?此时的人均消费是多少?
假定产出是根据含有失业率的生产函数Y= Kα[(l-u*)L]1-α 来表示的。在上式中,K为资本,L为劳动力,u*为自然失业率。国民储蓄率为s,劳动力增长率为n,资本折旧率为δ。 计算该经济的稳态的人均资本和人均产出。
在新古典增长模型中,人均生产函数为y=资本折旧率为d=0.04,储蓄率为s-0.2,人口增长率为n=0. 03,技术进步率为g=0. 02。求:(1)经济处于稳态的人均产出和资本存量。(2)黄金律水平下的储蓄率。
假定经济体的总量生产函数为Y=K0.5L0.5,在2012年,人均产出为4,投资率为0.5,劳动增长率为1%,资本折旧率为9%。 (1)经济体稳态的劳动资本存量是多少? (2)黄金律水平的劳动资本存量是多少? (3)画图分析这个经济体人均产出的可能变化趋势。
已知新古典增长模型中人均生产函数为y=f(k) =2k-0. 5k2,最为人均资本,储蓄率s为0.4,人口增长率以为0.2%。 请计算: (1)经漭达到稳定状态的值。 (2)黄金律所要求的人均资本k值
已知某经济社会生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。平均储蓄倾向s为0.1,人口增长率n为0.05,求 (1)均衡资本——劳动比率; (2)均衡人均产出、均衡人均储蓄和均衡人均消费
问答题已知某经济社会生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。平均储蓄倾向s为0.1,人口增长率n为0.05,求 (1)均衡资本——劳动比率; (2)均衡人均产出、均衡人均储蓄和均衡人均消费
单选题已知生产函数y=k-0.2k2,y为人均产出,k为人均资本存量。储蓄率为0.1,人口增长率为0.05,假设资本折旧为0,稳态时人均产出为()。A1.2B1C1.25D1.5