一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同的走法?( )A.8 B.16 C.24 D.32
一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同的走法?( )
A.8 B.16 C.24 D.32
A.8 B.16 C.24 D.32
参考解析
解析:本题属于几何问题。在如图所示的正八面体中,假设从最上面的A点出发,要达到最下面的B点,首先要经过中间平面上的四个点,此时4条路线是对称的。假设从A先到点1,下一步有点2和点4两种选择,此时已经有4×2=8种路线。但从点2走到点3之后,不能直接到B点,必须再经过点4,否则不满足“走过所有8个面的至少1条边”,因此总的走法就是8种。所以选择A选项。
相关考题:
一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同的走法?()A.8B.16C.24D.32
一个正方体的边长为1,一只蚂蚁从其一个角出发,沿着正方体的棱形进,直到经过该正方体的每一条棱为止(经过一个顶点即算作经过该顶点所连接的3条棱)。则其最短的行进距离为( )。A. 3B. 4C. 5D. 6
填空题当两个单核铬络离子之间有一个配聚羟基时,相当于两个正八面体以()相互接触。