将()转化为二叉树时,其根结点的右子树总是空的。
将()转化为二叉树时,其根结点的右子树总是空的。
相关考题:
●二叉排序树或者是一棵空树,或者是具有如下性质的二叉树:若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;其左、右子树本身就是两棵二叉排序树。根据该定义,对一棵非空的二叉排序树进行 (42)遍历,可得到一个结点元素的递增序列(42)A. 先序(根、左、右)B. 中序(左、根、右)C. 后序(左、右、根)D. 层序(从树根开始,按层次)
阅读以下说明和C语言函数,将应填入(n)处的字句写在答题纸的对应栏内。【说明】一棵非空二叉树中“最左下”结点定义为:若树根的左子树为空,则树根为“最左下”结点;否则,从树根的左子树根出发,沿结点的左子树分支向下查找,直到某个结点不存在左子树时为止,该结点即为此二叉树的“最左下”结点。例如,下图所示的以 A为根的二叉树的“最左下”结点为D,以C为根的子二叉树中的“最左下”结点为C。二叉树的结点类型定义如下:typedef stmct BSTNode{int data;struct BSTNode*lch,*rch;//结点的左、右子树指针}*BSTree;函数BSTree Find Del(BSTree root)的功能是:若root指向一棵二叉树的根结点,则找出该结点的右子树上的“最左下”结点*p,并从树于删除以*p为根的子树,函数返回被删除子树的根结点指针;若该树根的右子树上不存在“最左下”结点,则返回空指针。【函数】BSTrce Find_Del(BSTreeroot){ BSTreep,pre;if ( !root ) return NULL; /*root指向的二叉树为空树*/(1); /*令p指向根结点的右子树*/if ( !p ) return NULL;(2); /*设置pre的初值*/while(p->lch){ /*查找“最左下”结点*/pre=p;p=(3);}if ((4)==root) /*root的右子树根为“最左下”结点*/pre->rch=NULL;else(5)=NULL; /*删除以“最左下”结点为根的子树*/reurn p;}
● 满二叉树的特点是每层上的结点数都达到最大值,因此对于高度为 h(h1)的满二叉树,其结点总数为 (36) 。对非空满二叉树,由根结点开始,按照先根后子树、先左子树后右子树的次序,从 1、2、3、…依次编号,则对于树中编号为 i 的非叶子结点,其右子树的编号为 (37) (高度为 3 的满二叉树如下图所示) 。
满二叉树的特点是每层上的结点数都达到最大值,因此对于高度为h(h>1)的满二叉树,其结点总数为(36)。对非空满二叉树,由根结点开始,按照先根后子树、先左子树后右子树的次序,从1、2、3、…依次编号,则对于树中编号为i的非叶子结点,其右子树的编号为(37)(高度为3的满二叉树如下图所示)。A.2hB.2h-1C.2h-1D.2h-1+1
满二叉树的特点是每层上的结点数都达到最大值,因此对于高度为h(h>1)的满二叉树,其结点总数为(1)。对非空满二叉树,由根结点开始,按照先根后子树、先左子树后右子树的次序,从1、2、3、…依次编号,则对于树中编号为i的非叶子结点,其右子树的编号为(2)(高度为3的满二叉树如图8-17所示)。A.2hB.2h-1C.2h-1D.2h-1+1
一棵二叉树满足下列条件:对任一结点,若存在左、右子树,则其值都小于它的左子树上所有结点的值,而大于右子树上所有结点的值。现采用【 】遍历方式就可以得到这棵二叉树所有结点的递增序列。A.先根B.中根C.后根D.层次
对二叉树进行后序遍历和中序遍历时,都依照左子树在前右子树在后的顺序。已知对某二叉树进行后序遍历时,结点M是最后被访问的结点,而对其进行中序遍历时,M是第一个被访问的结点,那么该二叉树的树根结点为M,且( )。A.其左子树和右子树都必定为空B.其左子树和右子树都不为空C.其左子树必定为空D.其右子树必定为空
判断线索二叉树中某结点P有左孩子的条件是__(1)__。若由森林转化得到的二叉树是非空的二叉树,则二叉树形状是__(2)__。空白(2)处应选择()A、根结点无右子树的二叉树B、根结点无左子树的二叉树C、根结点可能有左子树和右子树D、各结点只有一个孩子的二叉树
判断题二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。A对B错