对于高维多元数据的代表性降维方法主要包括()。 A.主元分析B.多维尺度分析C.线性判别分析D.局部线性嵌入
对于高维多元数据的代表性降维方法主要包括()。
A.主元分析
B.多维尺度分析
C.线性判别分析
D.局部线性嵌入
相关考题:
LDA(线性区别分析)与PCA(主成分分析)均是降维的方法,下面描述不正确的是()A.PCA对高维数据降维后的维数是与原始数据特征维度相关(与数据类别标签无关)B.LDA降维后所得到维度是与数据样本的类别个数K有关(与数据本身维度无关)C.假设原始数据一共有K个类别,那么LDA所得数据的降维维度小于或等于K−1D.PCA和LDA均是基于监督学习的降维方法
下列关于数据降维的说法不正确的是()A.神经网络算法不能用于数据降维。#B.原始数据可能包含数以百/千/万计的属性,大部分情况下会有很多属性与任务不相关,是冗余的,数据降维可以提高数据质量,提升数据挖掘和机器学习的效率及精度。#C.数据降维的方法包括人工降维和自动降维,其中自动降维又分为维度规约和数据压缩 。#D.维度规约又称又称特征选择, 就是要删除冗余无用的属性;被保留的属性仍保持原有的物理意义。